US009223543B2

a2z United States Patent (10) Patent No.: US 9,223,543 B2
Mogi et al. 45) Date of Patent: Dec. 29, 2015
(54) ARITHMETIC UNIT, PROCESSOR, (56) References Cited
COMPILER AND COMPILING METHOD
U.S. PATENT DOCUMENTS
(75) Inventors: Yukihiko Mogi, Kanagawa (JP); Masato N
Kamata. TOkyO (JP)' Yuki Kawaguchi 5,931,943 A 8/1999 Orup ...ooovvvvnrcccn 712/222
> ’ g ’ 2002/0042801 Al* 4/2002 Sazzad 708/200
Tokyo (JP) 2003/0041081 Al* 2/2003 Steele, Jr. 708/495
2003/0236651 Al1* 12/2003 Miyasaka et al. 703/2
(73) Assignee: Sony Corporation, Tokyo (JP) 2005/0065990 Al* 3/2005 Allen 708/495
2010/0153938 Al* 6/2010 Arimillietal. ... 717/151
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
US.C. 154(b) by 1416 days. P 2001256199 A 9/2001
Jp 2005-031847 A 2/2005
(21) Appl. No.: 12/651,532 P 2006-154979 A 6/2006
(22) Filed: Jan. 4, 2010 * cited by examiner
(65) Prior Publication Data Primary Examiner — Idriss N Alrobaye
US 2010/0180268 A1 Jul. 15, 2010 Assistant Examiner — Brooke Taylor .
(74) Attorney, Agent, or Firm — Sony Corporation
30 Foreign Application Priority Data
(30 s APP y 57 ABSTRACT
Jan. 9,2009 (JP) .eeoeieiiineieieieccee 2009-003018 An arithmetic unit which includes: a data supply section
which supplies floating-point type object data to which a sign
(1) Int. Cl. is to be added and condition data which includes a condition
Go6l’ 9/45 (2006.01) under which the sign is added; a sign data generating section
Go6l” 7/485 (2006.01) which extracts the condition included in the condition data
GO6l’ 7/483 (2006.01) and generates sign data for adding the sign to the object data
(52) US.CL on the basis of the extracted condition; and an integer arith-
CPC s GO6F 7/483 (2013.01); GOGF 8/443 metic operation section which performs an integer arithmetic
(2013.01); GO6F 2207/3824 (2013.01) operation while treating the object data as integer type data so
(58) Field of Classification Search as to add the sign to the object data on the basis of the sign data

CPC .. GOG6F 7/483; GOGF 8/443; GOGF 2207/3824
USPC ittt 717/140
See application file for complete search history.

and the object data.

14 Claims, 29 Drawing Sheets

500

/q

510
SOURCE PROGRAM
STORAGE SECTION 600

COMPILE PROCESSOR

810~ SOURCE PROGRAM
ANALYSIS SECTION

PROGRAM
ANALYSIS SECTION

SIGN ADDITION CODE
EXTRACTION SECTION

620,

OPTIMIZING SECTION

PROGRAM
OPTIMIZING SECTION

SIGN ADDITION CODE
GENERATING SECTION

SIGN ADDITION CODE
CONVERTING SECTION

CODE 630
GENERATING SECTION

OBJECT PROGRAM
STORAGE SECTION

530

U.S. Patent Dec. 29, 2015 Sheet 1 of 29 US 9,223,543 B2

FIG. 1A
811 812 813
~ ~ ~
EXPONENT
s s FRACTION PART
31|30 23(22 0
1 bit 8 bit 23 bit
FIG. 1B
821 822
~ ~
s INTEGER PART
3130 0

1 bit 31 bit

U.S.

Patent Dec. 29, 2015 Sheet 2 of 29 US 9,223,543 B2
FIG. 2

100

I___h _____________________________________

' PROCESSOR 110 § 120

i CONTROL i

| SECTION ' | MEMORY

i i """""" 1/130 """ !

ry! ¥

| 140 |

: ~ !

| REGISTER §

1 N . 149

| rma— | 160 |

, 150 | 4 70 ||

: 1210 | i

| ¥ ' | FLOATING- | ||

| INTEGER | || . |

| L| ARITHMETIC | 112207\ o/ | | AR |

. SECTION ; . | "SECTION |

__

U.S. Patent

Dec. 29, 2015 Sheet 3 of 29

FIG. 3

(_ _START)

|

US 9,223,543 B2

LOAD CONDITION DATAAND OBJECT DATA
TO REGISTER

5911

|

EXTRACT SIGN OF CONDITION DATA

|S915

|

ADD SIGN TO OBJECT DATA

5919

U.S. Patent Dec. 29, 2015 Sheet 4 of 29 US 9,223,543 B2

FIG. 4
'/JOO
110
r./
CONTROL
SECTION
A
\J fl30
A4 “
140
,_/
REGISTER
N [149
N e
y 2 e
1 210! i
| FLOATING-
INTEGER
|| ARITHMETIC T
ARITHMETIC
ARITHVETIC OPERATION
SECTION SECTION

U.S. Patent Dec. 29, 2015 Sheet 5 of 29 US 9,223,543 B2

FIG. 5

(START)

S911
LOAD CONDITION DATAAND OBJECTDATA P

TO REGISTER

l

EXTRACT SIGN OF CONDITION DATA

l

INVERSE EXTRACTED SIGN

l

ADD SIGN TO OBJECT DATA

3915

58927

3919

U.S. Patent Dec. 29, 2015 Sheet 6 of 29 US 9,223,543 B2
FIG. 6
/JOO
110
CONTROL
SECTION
1 -
AA A
140
/_/
REGISTER
______________________ 149
50 || [ox8o000000] | | 190 170
= o o ~
1210 !
= e !
INTEGER ' 200 | FLOATNG
OPERATION ! !
a0 . | "SECTION

U.S. Patent

Dec. 29, 2015 Sheet 7 of 29

FIG. 7

(_ _START)

US 9,223,543 B2

LOAD CONDITION DATAAND OBJECT DATA
TO REGISTER

5911

INVERSE SIGN OF OBJECT DATA

| 3928

U.S. Patent

Dec. 29, 2015 Sheet 8 of 29
FIG. 8
'/J 00
110
/_/
CONTROL
SECTION

US 9,223,543 B2

A

L

140

REGISTER

INTEGER
ARITHMETIC
OPERATION

SECTION

149

5,160

170
/_/

FLOATING-
POINT
ARITHMETIC
OPERATION
SECTION

U.S. Patent Dec. 29, 2015 Sheet 9 of 29 US 9,223,543 B2

FIG. 9

(START)

S911
LOAD CONDITION DATAAND OBJECTDATA P

TO REGISTER

l

EXTRACT SIGN OF CONDITION DATA

l

SHIFT EXTRACTED SIGN

l

ADD SIGN TO OBJECT DATA

3915

| 5926

3919

U.S. Patent Dec. 29, 2015 Sheet 10 of 29 US 9,223,543 B2

FIG. 10
/Joo
110
/_/
CONTROL
SECTION
I 130
—
[y} i 1
140
f_/

160
L o
FLOATING-
INTEGER QAN
| | ARITHMETIC
ARITHMETIC
OPERATION OPERATION

U.S. Patent

Dec. 29, 2015 Sheet 11 of 29 US 9,223,543 B2
FIG. 11

(START)

S911
LOAD CONDITION DATAAND OBJECTDATA P

TO REGISTER

l 58922
SHIFT SIGN OF CONDITION DATA
l 53915
EXTRACT SIGN OF CONDITION DATA

53919

ADD SIGN TO OBJECT DATA

US 9,223,543 B2

Sheet 12 of 29

Dec. 29, 2015

U.S. Patent

FIG. 12

100

110

CONTROL
SECTION

130

140

FLOATING-

POINT
ARITHMETIC
OPERATION
SECTION

REGISTER
0x00000080

INTEGER

212
0x80000000

229

OPERATION
SECTION

ARITHMETIC

AA

U.S. Patent Dec. 29, 2015 Sheet 13 of 29 US 9,223,543 B2

FIG. 13

(_ _START)

l

LOAD CONDITION DATAAND OBJECT DATA
TO REGISTER

:

EXTRACT SIGN OF CONDITION DATA

:

SHIFT EXTRACTED SIGN

:

INVERSE EXTRACTED SIGN

:

ADD SIGN TO OBJECT DATA

5911

3915

| 5926

| 5927

3919

US 9,223,543 B2

Sheet 14 of 29

Dec. 29, 2015

U.S. Patent

FIG. 14

100

110

CONTROL
SECTION

130

140

REGISTER

FLOATING-
POINT
ARITHMETIC
OPERATION
SECTION

INTEGER
ARITHMETIC
OPERATION

SECTION

[y

U.S. Patent Dec. 29, 2015 Sheet 15 of 29 US 9,223,543 B2

FIG. 15

(_ _START)

l

LOAD CONDITION DATAAND OBJECT DATA
TO REGISTER

:

SHIFT SIGN OF CONDITION DATA

:

EXTRACT SIGN OF CONDITION DATA

:

INVERSE EXTRACTED SIGN

:

ADD SIGN TO OBJECT DATA

5911

| 3922

|S915

| 5927

3919

U.S. Patent

Dec. 29, 2015 Sheet 16 of 29 US 9,223,543 B2
FIG. 16
'/J 00
110
CONTROL
SECTION
i 130
'y I
140
r_/
REGISTER
.147%148 __________ 149
N T | i 160
N o
150 ! 1. 170
¥ CONDITION :
= N 20 GEN[I%%ING i R
INTEGER | || SECTION .| FLOATING-
| | ARITHMETIC | || " | ARITANETIC
SECTION | 4 | SECTION

| 200

U.S. Patent Dec. 29, 2015 Sheet 17 of 29 US 9,223,543 B2

FIG. 17

(START)

S911
LOAD CONDITION DATAAND OBJECTDATA P

TO REGISTER

l

GENERATE NEW CONDITION DATA ON
THE BASIS OF PLURAL CONDITION DATA

l

EXTRACT SIGN OF NEW CONDITION DATA

l

ADD SIGN TO OBJECT DATA

| 3923

58924

3919

U.S. Patent Dec. 29, 2015 Sheet 18 of 29 US 9,223,543 B2

FIG. 18
/Joo
110
CONTROL
SECTION
I 130
/_/
'y i 1
140
/_J
REGISTER

147% 148\i 149
R T T | 160

150 250 170
CONDITION |s
T DA =
INTEGER SECTION FLgérl\ll[\ll'G-
| | ARITHMETIC ARITHMETIC
OPERATION 221 ~ 0x80000000 OPERATION
SECTION SECTION

U.S. Patent Dec. 29, 2015 Sheet 19 of 29 US 9,223,543 B2

FIG. 19

(_ _START)

l

LOAD CONDITION DATAAND OBJECT DATA
TO REGISTER

:

GENERATE NEW CONDITION DATA ON
THE BASIS OF PLURAL CONDITION DATA

:

EXTRACT SIGN OF NEW CONDITION DATA

:

INVERSE EXTRACTED SIGN

:

ADD SIGN TO OBJECT DATA

5911

| 3923

| 5924

| 5927

3919

U.S. Patent Dec. 29, 2015 Sheet 20 of 29 US 9,223,543 B2

FIG. 20
100
110
/_/
CONTROL
SECTION
\
Y 130
Iy} .
140
,_J
REGISTER
147~ 148~ | 149
T o | |
y W0 gj y 70
¥ 210 .
¥ Y Y Y y i
B ‘| | FLOATING-
INTEGER | ! 1
| | ARITHMETIC | ! AND AND /i| 1|, POINT
x '| ARITHMETIC
“SECTON | | {| || OPERATION
SECTION 114 /| || “SECTION

U.S. Patent Dec. 29, 2015 Sheet 21 of 29 US 9,223,543 B2

FIG. 21

(_ _START)

l

LOAD CONDITION DATAAND OBJECT DATA
TO REGISTER

:

EXTRACT SIGN FROM EACH CONDITION DATA

:

INVERSE PREDETERMINED SIGN

:

COMPARE SIGNS

:

ADD SIGN TO OBJECT DATA

5911

|-3932

|-S933

| 5934

3919

U.S. Patent Dec. 29, 2015 Sheet 22 of 29 US 9,223,543 B2
FIG. 22
/Jseo
861 862 863 864
~ -~ ~ ~
HEADER| ERROR AUDIO DATA ANCILLARY DATA

CHECK

U.S. Patent Dec. 29, 2015 Sheet 23 of 29 US 9,223,543 B2

FIG. 23
900
1,901
BITSTREAM [0 1°
DECOMPOSITION
SECTION |
920 930
~ ~
HUFFMAN
SCALE FACTOR | . ~| DECODING

DECODER SECTION

! 940

INVERSE
™ QUANTIZER [*
950

N FS S — o,
; l HFB SECTION !
| BUTTERFLY |91 §
| COMPUTATION i
| SECTION i
i IMDCT |~992 5
| COMPUTATION |
: SECTION ;

!

; SUBBAND |93 |
: COMPOSITION :
SECTION

U.S. Patent Dec. 29, 2015 Sheet 24 of 29 US 9,223,543 B2
FIG. 24
(START)
58941
EXTRACTION AND ANALYSIS OF HEADER
* 58942
DECODE SIDE INFORMATION

5943

DECODE SCALE FACTOR
* >/8944

DECODE HUFFMAN CODE DATA

* 58950

INVERSE QUANTIZATION
58946

BUTTERFLY COMPUTATION
5947
IMDCT COMPUTATION

+ 58948

SUBBAND COMPOSITION
* 58949

OUTPUT PCM DATA

U.S. Patent Dec. 29, 2015 Sheet 25 of 29 US 9,223,543 B2

FIG. 25
/dsgso
(INVERSE QUANTIZATION)
S951
LOAD DATA TO REGISTER
* 5952
INITIALIZE i TO "0"
>l 5953
INITIALIZE j TO "0"

-

CONDUCT PROCESSES OTHER |5 S954
THAN SIGN PROCESS AMONG
INVERSE QUANTIZATION PROCESSES
3959 I
— 5955
j=j+1
. EXTRACT SIGN
S960 ! 5956
L ADD SIGN
i=i+1
I
S957
NO

j ENDED?

5958
NO

i ENDED?

RETURN

U.S. Patent Dec. 29, 2015 Sheet 26 of 29 US 9,223,543 B2

FIG. 26
/Joo
110
f_/
CONTROL
SECTION

1 130

/_/

11)

180 190

~ ~
FLOATING-POINT

INTEGER REGISTER REGISTER

____________________ 149
e | 160

150 | | d 170

=i | ~
INTEGER ||| 290 | | FLOATING-POINT
| | ARITHMETIC |i155° " \—=— . | ARITHMETIC
OPERATION |} .~~~ | OPERATION

SECTION | ;200 209 ; SECTION

U.S. Patent Dec. 29, 2015 Sheet 27 of 29 US 9,223,543 B2

FIG. 27

(_ START)

LOAD INTEGER TYPE DATA TO INTEGER REGISTER |sS971
AND LOAD FLOATING-POINT TYPE DATATO
FLOATING-POINT REGISTER
l S972
COPY FLOATING-POINT TYPE DATA IN S
INTEGER TYPE REGISTER
l 8973
EXTRACT SIGN FROM INTEGER TYPE DATA
l - S974
ADD SIGN TO FLOATING-POINT TYPE DATA
l S975
COPY FLOATING-POINT TYPE DATA IN i3
FLOATING-POINT REGISTER

END

U.S. Patent Dec. 29, 2015 Sheet 28 of 29 US 9,223,543 B2

FIG. 28
500

v

510

SOURCE PROGRAM
STORAGE SECTION

600

——

COMPILE PROCESSOR

: ! ANALYSIS SECTION

o PROGRAM P11 1
i | ANALYSIS SECTION | |
] { o
| | SIGN ADDITION CODE | ;
i | EXTRACTION SECTION : |

! OPTIMIZING SECTION

: : PROGRAM i i
| | OPTIMIZING SECTION | |
! ! Y | !
! ; SIGN ADDITION CODE : |
! ! GENERATING SECTION ! !
i i Y ;
! ; SIGN ADDITION CODE | !
= . CONVERTING SECTION !

L S

= CODE |-630 ’
: GENERATING SECTION i

530

OBJECT PROGRAM
STORAGE SECTION

U.S. Patent

Dec. 29, 2015 Sheet 29 of 29 US 9,223,543 B2
FIG. 29
(" START)
5981
READ SOURCE PROGRAM OUT
! 5982
START ANALYSIS OF SOURCE PROGRAM
EXTRACT CODE TO ADD SIGN TO -S983
FLOATING-POINT TYPE DATA
* 5984
START OPTIMIZATION OF PROGRAM
GENERATE CODE TOADD SIGNTO 55999
FLOATING-POINT TYPE DATA
CONVERT CODE TO ADD SIGN TO |-S986
FLOATING-POINT TYPE DATA
* 5987

GENERATE OBJECT PROGRAM

US 9,223,543 B2

1

ARITHMETIC UNIT, PROCESSOR,
COMPILER AND COMPILING METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an arithmetic unit. Mare
particularly, the invention relates to an arithmetic unit, a pro-
cessor, a compiler and a compiling method for performing a
floating-point arithmetic operation and an integer arithmetic
operation.

2. Description of the Related Art

Real numbers are represented as, for example, integer type
(i.e., fixed-point type) data and floating-point type data in an
information processing device, such as a computer. In orderto
change the sign of floating-point type data, a floating-point
arithmetic unit dedicated to performing arithmetic operations
on floating-point type data has been used. Recently, there is a
demand for a device that converts the sign of floating-point
type data at higher speed. In order to meet such a demand, an
arithmetic unit that performs integer arithmetic operations in
which floating-point type data is treated as unsigned integer
type data has been proposed (see, for example, FIG. 1 of
Japanese Unexamined Patent Application, First Publication
No. 2005-31847). The arithmetic unit performs an integer
arithmetic operation while treating floating-point type data as
unsigned integer type data so that only a sign bit representing
the sign of floating-point type data is changed into a bit value
which represents a positive number.

SUMMARY OF THE INVENTION

In the related art described above, the sign bit of floating-
point type data can be converted into a sign bit representing a
positive value at high speed through an integer arithmetic
operation while treating floating-point type data as unsigned
integer type data. In such an arithmetic unit, however, all the
sign bits in floating-point type data are converted into sign bits
that represent positive values. It is therefore not possible to
convert the sign bits in floating-point type data under other
conditions.

It is desirable to convert signs of floating-point type data at
high speed on the basis of condition data.

A first embodiment of the invention is an arithmetic unit
which includes: a data supply section which supplies float-
ing-point type object data to which a sign is to be added and
condition data which includes a condition under which the
sign is added; a sign data generating section which extracts
the condition included in the condition data and generates
sign data for adding the sign to the object data on the basis of
the extracted condition; and an integer arithmetic operation
section which performs an integer arithmetic operation while
treating the object data as integer type data so as to add the
sign to the object data on the basis of the sign data and the
object data. With this configuration, the sign can be added to
the object data through the integer arithmetic operation on the
basis of the floating-point type object data to which a sign is
to be added and the condition data which includes the condi-
tion under which the sign is added.

In the first embodiment, the sign data generating section
may perform the integer arithmetic operation while treating
the condition data as the integer type data if the condition data
is floating-point type data. With this configuration, the sign
data can be generated in an integer arithmetic unit on the basis
of the floating-point type data.

In the first embodiment, the sign data generating section
may include a bit string holding section which holds a bit

10

15

20

25

30

35

40

45

50

55

60

65

2

string for extracting the condition and the sign data generating
section may extract the condition from the condition data
using the bit string. With this configuration, the condition can
be extracted on the basis of the bit string for extracting the
condition.

In the first embodiment, the sign data generating section
may generate new condition data on the basis of a plurality of
pieces of the condition data supplied from the data supply
section, extract the condition included in the new condition
data and generate the sign data on the basis of the extracted
condition. With this configuration, new condition data can be
generated on the basis of plural condition data so as to gen-
erate the sign data.

In the first embodiment, the sign data generating section
may extract the plurality of conditions included in the plural-
ity of pieces of condition data on the basis of the plurality of
pieces of the condition data supplied from the data supply
section and generate the sign data on the basis of the plurality
of the extracted conditions. With this configuration, the sign
data can be generated on the basis of the plural conditions
generated from the plural condition data.

In the first embodiment, the sign data generating section
may supply the bit string supplied from the bit string holding
section to a sign calculating section as the sign data irrespec-
tive of a value of the condition data and the integer arithmetic
operation section may invert the sign of the object data on the
basis of the sign data. With this configuration, the sign of the
object data can be inverted irrespective of the value of the
condition data.

In the first embodiment, the sign data generating section
may extract, as the condition, the sign bit which is a bit
representing the sign in the condition data and generate the
sign data on the basis of the extracted sign bit. With this
configuration, the sign data can be generated on the basis of
the sign bit in the condition data.

In the first embodiment, the sign data generating section
may extract the sign bit which is the bit representing the sign
in the condition data as the condition, invert the sign of the
extracted sign bit to generate a new sign bit and then generate
the sign data on the basis of the new sign bit. With this
configuration, the sign data can be generated on the basis of
the sign bit with an inverted sign bit in the condition data.

In the first embodiment, the sign data generating section
may shift the sign bit which is the bit representing the sign in
the condition data so that a position of the sign in the sign data
and a position of the sign in the object data are aligned with
each other in the integer arithmetic operation section. With
this configuration, the position of the sign bit of the sign data
and the position of the sign bit of the object data can be
aligned with each other.

A second embodiment of the invention is a processor
which includes: a register which supplies floating-point type
object data to which a sign is to be added and condition data
which includes a condition under which the sign is added; a
sign data generating section which extracts the condition
included in the condition data and generates sign data for
adding the sign to the object data on the basis of the extracted
condition; and an integer arithmetic operation section which
performs an integer arithmetic operation while treating the
object data as integer type data so as to add the sign to the
object data on the basis of the sign data and the object data.
With this configuration, the sign can be added to the object
data through the integer arithmetic operation with the proces-
sor on the basis of the floating-point type object data to which
a sign is to be added and the condition data which includes the
condition under which the sign is added.

US 9,223,543 B2

3

A third embodiment of the invention is a compiler and a
method therefor. The compiler includes: a source program
storage section which stores a source program that includes a
code for adding a sign to object data on the basis of floating-
point type object data to which the sign is to be added and
condition data which includes a condition under which the
sign is added; a sign addition code extraction section which
reads the source program out of the source program storage
section and extracts the code from the read source program; a
sign addition code generating section which generates a code
for extracting the condition included in the condition data and
generate sign data for adding the sign to the object data on the
basis of the extracted condition and a code for performing an
integer arithmetic operation while treating the object data as
integer type data and add the sign to the object data on the
basis of the sign data and the object data; a sign addition code
converting section which converts the extracted code into the
generated code; and a code generating section which gener-
ates a machine language program code on the basis of the
source program including the converted code. With this con-
figuration, the code for adding the sign to the object data on
the basis of the object data and the condition data can be
converted into the code for generating the sign data and the
code for adding the sign to the object data.

According to the invention, an advantageous effect is
exhibited that the sign of floating-point type data can be
converted at high speed on the basis of the condition data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic diagram illustrating an exemplary
floating-point number format employed in an embodiment of
the invention;

FIG. 1B is a schematic diagram illustrating an exemplary
integer format employed in an embodiment of the invention;

FIG. 2 is ablock diagram of a first exemplary configuration
of a processor 100 according to a first embodiment of the
invention;

FIG. 3 is a flowchart illustrating exemplary steps in a sign
addition process in the first exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 4 is a block diagram of a second exemplary configu-
ration of the processor 100 according to the first embodiment
of'the invention; FIG. 5 is a flowchart illustrating exemplary
steps in a sign addition process in the second exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 6 is a block diagram illustrating a third exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 7 is a flowchart illustrating exemplary steps in a sign
addition process in the third exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 8 is a block diagram illustrating a fourth exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 9 is a flowchart illustrating exemplary steps in a sign
addition process in the fourth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 10 is a block diagram illustrating a fifth exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 is a flowchart illustrating exemplary steps in a sign
addition process in the fifth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 12 is a block diagram illustrating a sixth exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 13 is a flowchart illustrating exemplary steps in a sign
addition process in the sixth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 14 is ablock diagram illustrating a seventh exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 15 is a flowchart illustrating exemplary steps in a sign
addition process in the seventh exemplary configuration of
the processor 100 according to the first embodiment of the
invention;

FIG. 16 is a block diagram illustrating an eighth exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 17 is a flowchart illustrating exemplary steps in a sign
addition process in the eighth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 18 is a block diagram illustrating a ninth exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 19 is a flowchart illustrating exemplary steps in a sign
addition process in the ninth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 20 is a block diagram illustrating a tenth exemplary
configuration of the processor 100 according to the first
embodiment of the invention;

FIG. 21 is a flowchart illustrating exemplary steps in a sign
addition process in the tenth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion;

FIG. 22 is a schematic diagram illustrating a data structure
of'a frame in MP3 data, which is audio data compressed on the
basis of an MP3 (Moving Picture Experts Group (MPEG)-1
audio layer-3) standard;

FIG. 23 is a block diagram illustrating an exemplary con-
figuration of a decoding device 900 which decodes the MP3
data;

FIG. 24 is a flowchart illustrating exemplary steps in the
decoding device 900 which decodes the MP3 data;

FIG. 25 is a flowchart illustrating exemplary steps in an
inverse quantization process (step S950) by an inverse quan-
tization section 940 according to the second embodiment of
the invention;

FIG. 26 is a block diagram illustrating an exemplary con-
figuration of the processor 100 according to the third embodi-
ment of the invention;

FIG. 27 is a flowchart illustrating exemplary steps of a sign
addition process of the processor 100 according to the third
embodiment of the invention;

FIG. 28 is a block diagram illustrating an exemplary con-
figuration of a compiling system 500 according to the fourth
embodiment of the invention; and

FIG. 29 is a flowchart illustrating steps in a compile process
by a compiler 600 according to the fourth embodiment of the
invention.

DESCRIPTION OF THE EMBODIMENTS

Hereinafter, the best mode (hereinafter, referred to as
“embodiments™) for implementing the invention will be
described. Description will be given in the following order.

US 9,223,543 B2

5

1. First Embodiment (Sign Addition Process Control:
Example of Processor)

2. Second Embodiment (Mp3 Data Decoding Control:
Example of Decoding Device)

3. Third Embodiment (Sign Addition Process Control:
Example of Processor Including Integer Register and
Floating-Point Register)

4. Fourth Embodiment (Compiling Control: Example of
Compiling System)

1. First Embodiment

Example of Floating-Point Number Format
FIG. 1A is a schematic diagram illustrating an exemplary

floating-point number format employed in an embodiment of
the invention. FIG. 1B is a schematic diagram illustrating an
exemplary integer format employed in an embodiment of the
invention. FIG. 1A illustrates a format of single-precision
floating-point number data. FIG. 1B illustrates a format of
integer type data. The left end of each format represents the
most significant bit (MSB) and the right end represents the
least significant bit (LSB).

FIG. 1A illustrates a format representing single-precision
floating-point number data on the basis of the Institute for
Electrical and Electronics Engineering (IEEE) 754 standard.
The single-precision floating-point number is represented by
a bit string constituted by 32 bits (i.e., Oth to 31st bits). The
floating-point type data is constituted by a sign bit 811 which
represents a sign, an exponent part 812 which represents
exponents and a mantissa part 813 which represents mantis-
sas.

The sign bit 811 represents the sign of the floating-point
number. The sign bit 811 is the 31st, the most significant bit.
The sign bit 811 represents positive if the 31st bit is “0” and
represents negative if the 31st bit is “1.”

The exponent part 812 is a bit string which represents a
value obtained by adding “127” as a bias component to the
exponent for exponentiation with a number base of 2. The
exponent part 812 is the 23rd to 30th bits in the bit string.

The mantissa part 813 is a bit string which represents a
value not greater than 1 obtained by subtracting “1” from the
mantissa in the binary decimal. The mantissa part 813 is the
Oth to 22nd bits in the bit string.

The thus-configured floating-point number can be repre-
sented by the following Equation (1):

(—1°%2EBx(1+.F) 1)

wherein S is a value represented by the sign bit 811, Eis a
value represented by the exponent part 812 and B is a bias
component and F is a value represented by the mantissa part
813.

FIG. 1B is an integer type data format. As an example,
integer type data represented by a bit string constituted by 32
bits (i.e., Oth to 31st bits) is illustrated. The integer type data
is constituted by a sign bit (S) 821 and an integer part 822.

The sign bit 821 represents a sign of the integer type data.
The sign bit 821 is the 31st, the most significant bit. The sign
bit 821 represents positive if the 31st bit is “0” and represents
negative if the 31st bit is “1.”

The integer part 822 is constituted by a bit string other than
the sign bit 821 of the integer type data. If the sign bit 821 is
positive, the integer part 822 is represented by the binary
numeration system. If the sign bit 821 is negative, the integer
part 822 is represented by the two’s complement of the binary
number. The two’s complement herein is a bit string obtained
by inverting a bit string in which an absolute value is repre-
sented by a binary number and adding “1” to the least signifi-
cant bit of the inverted bit string. The integer part 822 corre-
sponds to the Oth to the 30th bits.

10

15

20

25

30

35

40

45

50

55

60

65

6

The processor 100 which processes the thus-configured
floating-point type data and integer type data will be
described in detail with reference to the drawings.

First Exemplary Configuration of Processor

FIG. 2 isablock diagram of a first exemplary configuration
of a processor 100 according to a first embodiment of the
invention. FIG. 2 illustrates the processor 100 and the
memory 120. The processor 100 processes the floating-point
type object data to which the sign is to be added and the 32-bit
integer type condition data including the condition under
which the sign is added. The processor 100 includes a control
section 110, a bus 130, a register 140, an integer arithmetic
operation section 150, a sign determining section 160 and a
floating-point arithmetic operation section 170.

The control section 110 controls components of the pro-
cessor 100. The control section 110 is implemented by, for
example, a central processing unit (CPU). The control section
110 instructs, for example, data transfer from the register 140
to the sign determining section 160 and data transfer from the
sign determining section 160 to the register 140.

The bus 130 is used for data communication among the
components of the processor 100.

The register 140 temporarily keeps data necessary for the
arithmetic operation in the integer arithmetic operation sec-
tion 150, the sign determining section 160 and the floating-
point arithmetic operation section 170. The register 140 tem-
porarily keeps results of the arithmetic operation in the
integer arithmetic operation section 150, the sign determining
section 160 and the floating-point arithmetic operation sec-
tion 170. The register 140 is configured by, for example, a
flip-flop. The register 140 temporarily keeps the object data
and the condition data supplied from the memory 120 via the
bus 130. The register 140 temporarily keeps results of pro-
cessing in the sign determining section 160. The register 140
supplies the temporarily kept object data to the sign deter-
mining section 160 via the signal line 149. The register 140
supplies the temporarily kept condition data to the sign deter-
mining section 160 via the signal line 148. The register 140 is
an example of the data supply section and the register recited
in the claims.

The integer arithmetic operation section 150 performs inte-
ger arithmetic operation on the basis of the integer type data
supplied from the register 140. The integer arithmetic opera-
tion section 150 is implemented by, for example, an arith-
metic logic unit (ALU) of a CPU in a common computer. The
integer arithmetic operation section 150 supplies results of
the integer arithmetic operation to the register 140 via the bus
130.

The sign determining section 160 adds a sign to the object
data on the basis of the object data and the condition data
supplied from the register 140. The sign determining section
160 includes a sign data generating section 200 and a sign
adding section 300.

The sign data generating section 200 generates sign data
for adding the sign to floating-point type data on the basis of
a condition included in the condition data. The sign data
generating section 200 supplies the generated sign data to the
sign adding section 300. The sign data generating section 200
includes a bit string holding section 210 and a sign bit extrac-
tion section 220. The sign data generating section 200 is an
exemplary sign data generating section recited in the claims.

The bit string holding section 210 keeps a bit string for
extracting the sign bit from the condition data. The bit string
holding section 210 keeps, for example, a bit string of
“0x80000000” of the hexadecimal number if the condition
data is 32-bit data. The bit string holding section 210 supplies
the currently kept bit string to the sign bit extraction section

US 9,223,543 B2

7

220. The bit string holding section 210 is an exemplary bit
string holding section recited in the claims.

The sign bit extraction section 220 extracts, as a condition,
the sign bit representing the sign in the condition data on the
basis of the condition data supplied from the register 140 and
the bit string supplied from the bit string holding section 210.
The sign bit extraction section 220 is implemented by, for
example, an AND operation circuit. The sign bit extraction
section 220 supplies the extracted sign bit to the sign adding
section 300 as the sign data.

The sign adding section 300 adds the sign to the object data
on the basis of the object data supplied from the register 140
and the sign data supplied from the sign determining section
160. The sign adding section 300 processes the object data as
integer type data and adds the sign to the object data through
the integer arithmetic operation on the object data and the sign
data, which is the integer type data. The sign adding section
300 is implemented by, for example, the integer arithmetic
operation circuit which performs arithmetic addition (ADD).
The sign adding section 300 supplies the signed object data to
the register 140. Although the integer arithmetic operation
circuit which performs an arithmetic addition (ADD) opera-
tion has been described as the sign adding section 300, the
sign adding section 300 is not limited to the same. Any circuit
can be employed as long as it converts the sign bit on the basis
of'the sign data. For example, the sign adding section 300 may
be an exclusive OR (XOR) circuit. The sign adding section
300 is an exemplary integer arithmetic operation section
recited in the claims.

The floating-point arithmetic operation section 170 per-
forms a floating-point arithmetic operation on the basis of
floating-point type data supplied from the register 140. The
floating-point arithmetic operation section 170 is imple-
mented by, for example, a floating-point number processing
unit (FPU) of the CPU in a common computer. The floating-
point arithmetic operation section 170 performs the floating-
point arithmetic operation on the basis of, for example, the
32-bit floating-point type data supplied from the register 140.
The floating-point arithmetic operation section 170 supplies,
for example, the result of the floating-point arithmetic opera-
tion to the register 140 via the bus 130. Although the proces-
sor 100 including the register 140 has been described above,
the sign determining section 160 may alternatively be an
independent computation section. Although the integer type
data is employed herein as the condition data, floating-point
type data may alternatively be employed as the condition
data, which may be used as the integer type data when the sign
code is generated.

The memory 120 keeps the data necessary for the operation
of the processor 100. The memory 120 keeps, for example,
the floating-point type object data to which the sign is to be
added in the sign determining section 160 and the condition
data which includes the conditions under which the sign is
added to the object data. The memory 120 supplies the data
necessary for the operation of the processor 100 to the pro-
cessor 100 via the bus 130.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the condition data in which the
sign bit of the integer type data represents “1” and the object
data in which the sign bit of floating-point type data repre-
sents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 210. In this manner, the sign data
in which the sign bit 821 is “1” and the entire integer part 822

10

15

20

25

30

35

40

45

50

55

60

65

8

is “0” is generated and the generated sign data is supplied to
the sign adding section 300. The sign adding section 300 then
adds the sign to the object data through the arithmetic addition
(ADD) operation on the basis of the object data supplied via
the signal line 149 and the sign data supplied from the sign bit
extraction section 220. In this manner, “1”” of the sign bit 821
is added to “1” of the sign bit 811 to generate the object data
in which the sign bit 811 is converted into “0.” The exponent
part 812 and the mantissa part 813 are not converted at this
time. If'the sign bit of the condition data is “1” and the sign bit
811 ofthe object data is “0,” the sign bit 811 is converted from
“0” into “1” and, the exponent part 812 and the mantissa part
813 are not converted.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the condition data in which the
sign bit of the integer type data represents “0” and the object
data in which the sign bit of the single-precision floating-
point type data represents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 210. The sign data in which the
sign bit 821 is “0” and the entire integer part 822 is “0” is
generated and the generated sign data is supplied to the sign
adding section 300. The sign adding section 300 then adds the
sign to the object data through the arithmetic addition (ADD)
operation on the basis of the object data supplied via the
signal line 149 and the sign data supplied from the sign bit
extraction section 220. Accordingly, “0” is added to “1” of the
sign bit 811 to generate the object data in which the sign bit
811 is not converted. If the sign bit of the condition data is “0”
and the sign bit of object data is “0,” since “0” of the sign bit
821 is added to “0” of the sign bit 811, the object data in which
the sign bit 811 is not converted is generated.

Next, an operation of the processor 100 of a first exemplary
configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 3 is a flowchart illustrating exemplary steps in a sign
addition process in the first exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the condition data and the object data are loaded into
the register 140 from the memory 120 (step S911). Next, the
sign bit extraction section 220 extracts the sign bit of the
condition data (step S915). Subsequently, the sign adding
section 300 adds the sign to the object data (step S919).

Since the processor 100 includes the sign determining sec-
tion 160, the processor 100 can add the sign to the object data
on the basis of the condition data and the object data. That is,
since the bit string holding section 210 and the sign bit extrac-
tion section 220 are provided in the sign determining section
160, the processor 100 can convert the sign of the object data
if the sign bit of the condition data is “1.”

Second Exemplary Configuration of Processor

FIG. 4 is a block diagram of a second exemplary configu-
ration of the processor 100 according to the first embodiment
of'the invention. The present processor 100 is the same as that
illustrated in FIG. 2 except that an inverting section 230 is
included. Since the present processor 100 has the same con-
figuration as that illustrated in FIG. 2 except for the inverting
section 230, similar components will be denoted by similar
reference numerals and description thereof will be omitted.
The sign data generating section 200 illustrated in FIG. 4 is an
exemplary sign data generating section recited in the claims.

US 9,223,543 B2

9

The inverting section 230 inverts the sign bit supplied from
the sign bit extraction section 220 on the basis of the bit string
supplied from the bit string holding section 210. The inverting
section 230 is implemented by, for example, the integer arith-
metic operation circuit which performs the arithmetic addi-
tion (ADD) operation. The inverting section 230 supplies the
sign-inverted sign bit to the sign adding section 300 as the
sign data. Although the inverted section 230 has been
described as being an integer arithmetic operation circuit
which performs the arithmetic addition (ADD) operation, the
inverting section 230 is not limited to this. Any circuit can be
employed as long as it converts only the sign bit on the basis
of the sign data. For example, the inverting section 230 may
be a circuit which performs an exclusive OR (XOR) opera-
tion.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the condition data in which the
sign bit of the integer type data represents “0” and the object
data in which the sign bit of floating-point type data repre-
sents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 210. Accordingly, the data with
the bit representing the sign bit being “0” and all other bits
being “0” is generated. The inverting section 230 then per-
forms the arithmetic addition (ADD) operation on the basis of
the data supplied from the sign bit extraction section 220 and
the bit string supplied from the bit string holding section 210.
The inverting section 230 inverts the bit which represents the
sign bit of the condition data ofthe data supplied from the sign
bit extraction section 220. In this manner, the sign data in
which the sign bit 821 is “1” and the entire integer part 822 is
“0” is generated and the generated sign data is supplied to the
sign adding section 300. The sign adding section 300 then
adds the sign to the object data through the arithmetic addition
(ADD) operation on the basis of the object data supplied via
the signal line 149 and the sign data supplied from the invert-
ing section 230. In this manner, “1” of the sign bit 821 is
added to “1” of the sign bit 811 to generate the object data in
which the sign bit 811 is converted into “0.” The exponent part
812 and the mantissa part 813 are not converted at this time.
Ifthe sign bit of the condition data is “0” and the sign bit 811
of'the object data is “0,” the sign bit 811 is converted from “0”
into “1” and, the exponent part 812 and the mantissa part 813
are not converted.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the condition data in which the
sign bit of the integer type data is “1” and the object data in
which the sign bit of the single-precision floating-point type
data is “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 210. Accordingly, the data in
which the bit representing the sign bit is “1” and all other bits
are “0” is generated. The inverting section 230 then performs
the arithmetic addition (ADD) operation on the basis of the
data supplied from the sign bit extraction section 220 and the
bit string supplied from the bit string holding section 210. The
inverting section 230 inverts the bit which represents the sign
bit of the condition data of the data supplied from the sign bit
extraction section 220. In this manner, the sign data in which
the sign bit 821 is “0” and the entire integer part 822 is “0” is
generated and the generated sign data is supplied to the sign

15

20

30

40

45

10

adding section 300. The sign adding section 300 then adds the
sign to the object data through the arithmetic addition (ADD)
operation on the basis of the object data supplied via the
signal line 149 and the sign data supplied from the inverting
section 230. Accordingly, “0” is added to “1” of the sign bit
811 to generate the object data in which the sign bit 811 is not
converted. If the sign bit of the condition data is “1” and the
sign bit of object data is “0,” since “0” of the sign bit 821 is
added to “0” of that sign bit 811, the object data in which the
sign bit 811 is not converted is generated.

Next, an operation of the processor 100 of a second exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 5 is a flowchart illustrating exemplary steps in a sign
addition process in the second exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the condition data and the object data are loaded into
the register 140 from the memory 120 (step S911). Next, the
sign bit extraction section 220 extracts the sign bit of the
condition data (step S915). The inverting section 230 then
inverts the extracted sign bit (step S927). Subsequently, the
sign adding section 300 adds the sign to the object data (step
S919).

Since the processor 100 includes the inverting section 230,
the sign of the object data can be converted if the sign bit of the
condition data is “0.”

Third Exemplary Configuration of Processor

FIG. 6 is a block diagram illustrating a third exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 2 except that a sign data
generating section 200 is included. Since the present proces-
sor 100 has the same configuration as that illustrated in FIG.
2 except for the sign data generating section 200, similar
components will be denoted by similar reference numerals
and description thereof will be omitted. The sign data gener-
ating section 200 illustrated in FIG. 6 is an exemplary sign
data generating section recited in the claims.

The sign data generating section 200 includes the bit string
holding section 210 illustrated in FIG. 2. The bit string hold-
ing section 210 supplies the currently kept bit string to the
sign adding section 300 irrespective of the value of the con-
dition data.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the condition data in which the
sign bit of the integer type data represents “0” or “1” and the
object data in which the sign bit of floating-point type data
represents “1.

In this case, the bit string holding section 210 supplies the
currently kept bit string to the sign adding section 300 irre-
spective of the value of the condition data. In this manner, the
sign data in which the sign bit 821 is “1” and the entire integer
part 822 is “0” is generated and the generated sign data is
supplied to the sign adding section 300. The sign adding
section 300 then adds the sign to the object data through the
arithmetic addition (ADD) operation on the basis of the
object data supplied via the signal line 149 and the sign data
supplied from the bit string holding section 210. In this man-
ner, “1” of the sign bit 821 is added to “1” of the sign bit 811
to generate the object data in which the sign bit 811 is con-
verted into “0.” The exponent part 812 and the mantissa part
813 are not converted at this time. If the sign bit 811 of the
object data is ““0,” the sign bit 811 is converted from “0” into
“1” and, the exponent part 812 and the mantissa part 813 are
not converted.

US 9,223,543 B2

11

Next, an operation of the processor 100 of a third exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 7 is a flowchart illustrating exemplary steps in a sign
addition process in the third exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the condition data and the object data are loaded into
the register 140 from the memory 120 (step S911). Next, the
sign adding section 300 inverts the sign bit of the object data
(step S928).

Since the processor 100 includes the bit string holding
section 210 and the sign adding section 300 in the sign deter-
mining section 160, the sign of the object data can be con-
verted irrespective of the value of the condition data.

Fourth Exemplary Configuration of Processor

FIG. 8 is a block diagram illustrating a fourth exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 2 except that a bit string
holding section 212 and the shift section 240 are included in
place of the bit string holding section 210. Since the present
processor 100 has the same configuration as that illustrated in
FIG. 2 except for the bit string holding section 212 and the
shift section 240, similar components will be denoted by
similar reference numerals and description thereof will be
omitted. The sign data generating section 200 illustrated in
FIG. 8 is an exemplary sign data generating section recited in
the claims.

The bit string holding section 212 keeps a bit string of
“0x00000080” of the hexadecimal number for extracting the
sign bit from the 8-bit length condition data. The bit string
holding section 212 is an exemplary bit string holding section
recited in the claims.

If the condition data and the object data have different bit
lengths, the shift section 240 shifts the sign bit extracted from
the condition data in order to align the position of the sign bit
with the position of the sign bit of the condition data in the
sign adding section 300. In particular, for example, if the 8-bit
condition data is supplied via the signal line 148 and the sign
bit is extracted in the sign bit extraction section 220, the shift
section 240 shifts the extracted sign bit to the left by 24 bits.
The shift section 240 shifts the sign bit supplied from the sign
bit extraction section 220 and supplies the shifted sign bit to
the sign adding section 300 as the sign data.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “1” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 212. Accordingly, the data is
generated in which the 7th bit representing the sign bit of the
condition data is “1”” and all other bits are “0.” Then, the shift
section 240 shifts the data supplied from the sign bit extrac-
tion section 220 to the left by 24 bits. In this manner, the sign
data in which the sign bit 821 is “1” and the entire integer part
822 is “0” is generated and the generated sign data is supplied
to the sign adding section 300. The sign adding section 300
then adds the sign to the object data through the arithmetic
addition (ADD) operation on the basis of the object data
supplied via the signal line 149 and the sign data supplied
from the shift section 240. In this manner, “1” of the sign bit

10

15

20

25

30

35

40

45

50

55

60

65

12

821 is added to “1” of the sign bit 811 to generate the object
data in which the sign bit 811 is converted into “0.” The
exponent part 812 and the mantissa part 813 are not converted
at this time. If the sign bit of the condition data is “1” and the
sign bit 811 of the object data is “0,” the sign bit 811 is
converted from “0” into “1” and, the exponent part 812 and
the mantissa part 813 are not converted.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “0” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 212. Accordingly, the data is
generated in which the 7th bit representing the sign bit of the
condition data is “0” and all other bits are “0.” Then, the shift
section 240 shifts the data supplied from the sign bit extrac-
tion section 220 to the left by 24 bits. In this manner, the sign
data in which the sign bit 821 is “0” and the entire integer part
822 is “0” is generated and the generated sign data is supplied
to the sign adding section 300. The sign adding section 300
then adds the sign to the object data through the arithmetic
addition (ADD) operation on the basis of the object data
supplied via the signal line 149 and the sign data supplied
from the shift section 240. Accordingly, “0” ofthe sign bit 821
is added to “1” of the sign bit 811 to generate the object data
in which the sign bit 811 is not converted. If the sign bit of the
condition data is “0” and the sign bit of object data is “0”,
since “0” of the sign bit 821 is added to “0” of the sign bit 811,
the object data in which the sign bit 811 is not converted is
generated.

Next, an operation of the processor 100 of a fourth exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 9 is a flowchart illustrating exemplary steps in a sign
addition process in the fourth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the 8-bit length condition data and the 32-bit length
object data are loaded into the register 140 from the memory
120 (step S911). Next, the sign bit extraction section 220
extracts the sign bit of the condition data (step S915). Next,
the shift section 240 shifts the data supplied from the sign bit
extraction section 220 to the left by 24 bits (step S926).
Subsequently, the sign adding section 300 adds the sign to the
object data (step S919).

Thus, since the processor 100 includes the bit string hold-
ing section 212 and the shift section 240, when the condition
data and the object data have different bit lengths, the sign can
be added to the object data on the basis of the condition data
and the object data. That is, even if the condition data and the
object data have different bit lengths, the processor 100 can
add the sign to the object data if the sign bit of the condition
data is “1” as in the processor 100 illustrated in FIG. 2.
Fifth Exemplary Configuration of Processor

FIG. 10 is a block diagram illustrating a fifth exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 2 except that the shift
section 240 illustrated in FIG. 8 is included. Since the present
processor 100 has the same configuration as that illustrated in
FIG. 2 except for the shift section 240, similar components
will be denoted by similar reference numerals and description

US 9,223,543 B2

13

thereof will be omitted. The sign data generating section 200
illustrated in FIG. 10 is an exemplary sign data generating
section recited in the claims.

The processor 100 supplies the condition data to the shift
section 240 via the signal line 148.

The shift section 240 supplies the shifted data to the sign bit
extraction section 220 as new condition data. When the 8-bit
condition data is supplied via the signal line 148, for example,
the shift section 240 generates the new condition data in
which the sign bit has been shifted to the left by 24 bits. The
shift section 240 supplies the generated new condition data to
the sign bit extraction section 220.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “1” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The shift section 240 shifts the condition data supplied via
the signal line 148 to the left by 24 bits. Accordingly, the new
data in which the 31th bit representing the sign bit 821 is “1”
and all other bits are “0” is generated. The generated condi-
tion data is supplied to the sign bit extraction section 220.
Then, the sign bit extraction section 220 extracts the sign bit
821 from the condition data through the logical product
(AND) arithmetic operation on the basis of the new condition
data supplied from the shift section 240 and the bit string
supplied from the bit string holding section 210. In this man-
ner, the sign data in which the sign bit 821 is “1” and the entire
integer part 822 is “0” is generated and the generated sign data
is supplied to the sign adding section 300. The sign adding
section 300 then adds the sign to the object data through the
arithmetic addition (ADD) operation on the basis of the
object data supplied via the signal line 149 and the sign data
supplied from the sign bit extraction section 220. In this
manner, “1” of the sign bit 821 is added to “1” of the sign bit
811 to generate the object data in which the sign bit 811 is
converted into “0.” The exponent part 812 and the mantissa
part 813 are not converted at this time. If the sign bit of the
condition data is “1” and the sign bit 811 of the object data is
“0,” the sign bit 811 is converted from “0” into “1” and, the
exponent part 812 and the mantissa part 813 are not con-
verted.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “0” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The shift section 240 shifts the condition data supplied via
the signal line 148 to the left by 24 bits. Accordingly, the new
data in which the 31th bit representing the sign bit 821 is “0”
and all other bits are “0” is generated. The generated condi-
tion data is supplied to the sign bit extraction section 220.
Then, the sign bit extraction section 220 extracts the sign bit
821 from the condition data through the logical product
(AND) arithmetic operation on the basis of the new condition
data supplied from the shift section 240 and the bit string
supplied from the bit string holding section 210. In this man-
ner, the sign data in which the sign bit 821 is “0” and the entire
integer part 822 is “0” is generated and the generated sign data
is supplied to the sign adding section 300. The sign adding
section 300 then adds the sign to the object data through the
arithmetic addition (ADD) operation on the basis of the
object data supplied via the signal line 149 and the sign data
supplied from the sign bit extraction section 260. Accord-
ingly, “0” of the sign bit 821 is added to “1” of the sign bit 811
to generate the object data in which the sign bit 811 is not
converted. If the sign bit of the condition data is “0” and the

10

15

20

25

30

35

40

45

50

55

60

65

14

sign bit of object data is “0”, since “0” of the sign bit 821 is
added to “0” of the sign bit 811, the object data in which the
sign bit 811 is not converted is generated.

Next, an operation of the processor 100 of a fifth exemplary
configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 11 is a flowchart illustrating exemplary steps in a sign
addition process in the fifth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the 8-bit length condition data and the 32-bit length
object data are loaded into the register 140 from the memory
120 (step S911). Next, the shift section 240 shifts the sign bit
of the condition data to the left by 24 bits and generates the
condition data (step S922). Next, the sign bit extraction sec-
tion 220 extracts the sign bit of the condition data supplied
from the shift section 240 (step S915). Subsequently, the sign
adding section 300 adds the sign to the object data (step
S919).

Since the processor 100 includes the shift section 240,
when the condition data and the object data have different bit
lengths, the sign can be added to the object data on the basis
of the condition data and the object data. That is, even if the
condition data and the object data have different bit lengths,
the processor 100 can add the sign to the object data if the sign
bit of the condition data is “1” as in the processor 100 illus-
trated in FIG. 2.

Sixth Exemplary Configuration of Processor

FIG. 12 is a block diagram illustrating a sixth exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 8 except that a bit string
holding section 213 and the inverting section 230, which is
illustrated in FIG. 4, are included. Since the present processor
100 has the same configuration as that illustrated in FIG. 8
except for the bit string holding section 213 and the inverting
section 230, similar components will be denoted by similar
reference numerals and description thereof will be omitted.
The sign data generating section 200 illustrated in FIG. 12 is
an exemplary sign data generating section recited in the
claims.

The bit string holding section 213 keeps the bit string for
inverting the sign bit supplied from the shift section 240 in the
inverting section 230. The bit string holding section 213
keeps the bit string of “0x80000000” of the hexadecimal
number, for example, if the sign bit supplied from the shift
section 240 is 32-bit data. The bit string holding section 213
supplies the currently kept bit string to the inverting section
230.

The inverting section 230 inverts the sign bit supplied from
the shift section 240 on the basis of the bit string supplied
from the bit string holding section 213. The inverting section
230 supplies the sign bit with an inverted sign to the sign
adding section 300 as the sign data.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “0” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 212. Accordingly, data is gen-
erated in which the 7th bit representing the sign bit of the
condition data is “0” and all other bits are “0.” Then, the shift

US 9,223,543 B2

15
section 240 shifts the data supplied from the sign bit extrac-
tion section 220 to the left by 24 bits. Accordingly, the data
with the 31th bit representing the sign bit 821 is “0” and all
other bits are “0” is generated and the generated data is
supplied to the inverting section 230.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the data supplied
from the shift section 240 and the bit string supplied from the
bit string holding section 213. The inverting section 230
inverts the bit which represents the sign bit of the data sup-
plied from the shift section 240. In this manner, the sign data
in which the sign bit 821 is “1” and the entire integer part 822
is “0” is generated and the generated sign data is supplied to
the sign adding section 300. The sign adding section 300 then
adds the sign to the object data through the arithmetic addition
(ADD) operation on the basis of the object data supplied via
the signal line 149 and the sign data supplied from the invert-
ing section 230. In this manner, “1” of the sign bit 821 is
added to “1” of the sign bit 811 to generate the object data in
which the sign bit 811 is converted into “0.” The exponent part
812 and the mantissa part 813 are not converted at this time.
Ifthe sign bit of the condition data is “1” and the sign bit 811
of'the object data is “0,” the sign bit 811 is converted from “0”
into “1” and, the exponent part 812 and the mantissa part 813
are not converted.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “1” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The sign bit extraction section 220 extracts the sign bit 821
from the condition data through the logical product (AND)
arithmetic operation on the basis of the condition data sup-
plied via the signal line 148 and the bit string supplied from
the bit string holding section 212. Accordingly, the data is
generated in which the 7th bit representing the sign bit of the
condition data is “1”” and all other bits are “0.” Then, the shift
section 240 shifts the data supplied from the sign bit extrac-
tion section 220 to the left by 24 bits. Accordingly, the data in
which the 31th bit representing the sign bit 821 is “1”” and all
other bits are “0” is generated and the generated data is
supplied to the inverting section 230.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the data supplied
from the shift section 240 and the bit string supplied from the
bit string holding section 213. The inverting section 230
inverts the bit which represents the sign bit of the data sup-
plied from the shift section 240. In this manner, the sign data
in which the sign bit 821 is “0” and the entire integer part 822
is “0” is generated and the generated sign data is supplied to
the sign adding section 300. The sign adding section 300 then
adds the sign to the object data through the arithmetic addition
(ADD) operation on the basis of the object data supplied via
the signal line 149 and the sign data supplied from the invert-
ing section 230. Accordingly, “0” of the sign bit 821 is added
to “1” of the sign bit 811 to generate the object data in which
the sign bit 811 is not converted. Ifthe sign bit of the condition
data is “0” and the sign bit of object data is “0”, since “0” of
the sign bit 821 is added to “0” of the sign bit 811, the object
data in which the sign bit 811 is not converted is generated.

Next, an operation of the processor 100 of a sixth exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 13 is a flowchart illustrating exemplary steps in a sign
addition process in the sixth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the 8-bit length condition data and the 32-bit length
object data are loaded into the register 140 from the memory
120 (step S911). Next, the sign bit extraction section 220
extracts the sign bit of the condition data (step S915). Next,
the shift section 240 shifts the data supplied from the sign bit
extraction section 220 to the left by 24 bits (step S926). The
inverting section 230 then inverts the extracted sign bit (step
S927). Subsequently, the sign adding section 300 adds the
sign to the object data (step S919).

Since the processor 100 includes the shift section 240, the
bit string holding section 213 and the inverting section 230,
even ifthe condition data and the object data have different bit
lengths, the sign can be added to the object data on the basis
of the condition data and the object data. That is, even if the
condition data and the object data have different bit lengths,
the processor 100 can add the sign to the object data if the sign
bit of the condition data is “0” as in the processor 100 illus-
trated in FIG. 4.

Seventh Exemplary Configuration of Processor

FIG. 14 is ablock diagram illustrating a seventh exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 10 except that the sign data
generating section 200 includes the inverting section 230
illustrated in FIG. 2. Since the present processor 100 has the
same configuration as that illustrated in FIG. 10 except for the
inverting section 230, similar components will be denoted by
similar reference numerals and description thereof will be
omitted. The sign data generating section 200 illustrated in
FIG. 14 is an exemplary sign data generating section recited
in the claims.

The inverting section 230 inverts the sign bit supplied from
the sign bit extraction section 220 on the basis of the bit string
supplied from the bit string holding section 210.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “0” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The shift section 240 shifts the condition data supplied via
the signal line 148 to the left by 24 bits. Accordingly, the new
data in which the 31th bit representing the sign bit 821 is “0”
and all other bits are “0” is generated. The generated condi-
tion data is supplied to the sign bit extraction section 220.
Then, the sign bit extraction section 220 extracts the sign bit
821 from the condition data through the logical product
(AND) arithmetic operation on the basis of the new condition
data supplied from the shift section 240 and the bit string
supplied from the bit string holding section 210. In this man-
ner, the data in which the sign bit 821 is “0” and the entire
integer part 822 is “0” is generated and the generated data is
supplied to the inverting section 230.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the data supplied
from the sign bit extraction section 220 and the bit string
supplied from the bit string holding section 210. The inverting
section 230 inverts the bit which represents the sign bit of the
data supplied from the sign bit extraction section 220. In this
manner, the sign data in which the sign bit 821 is “1” and the
entire integer part 822 is “0” is generated and the generated
sign data is supplied to the sign adding section 300. The sign
adding section 300 then adds the sign to the object data
through the arithmetic addition (ADD) operation on the basis

US 9,223,543 B2

17

of'the object data supplied via the signal line 149 and the sign
data supplied from the inverting section 230. In this manner,
“1” of the sign bit 821 is added to “1” of the sign bit 811 to
generate the object data in which the sign bit 811 is converted
into “0.” The exponent part 812 and the mantissa part 813 are
not converted at this time. If the sign bit of the condition data
is “1” and the sign bit 811 of the object data is “0,” the sign bit
811 is converted from “0” into “1” and, the exponent part 812
and the mantissa part 813 are not converted.

In this configuration, it is assumed that the sign is added to
the object data on the basis of the 8-bit condition data in which
the sign bit of the integer type data represents “1” and the
32-bit object data in which the sign bit of floating-point type
data represents “1.”

The shift section 240 shifts the condition data supplied via
the signal line 148 to the left by 24 bits. Accordingly, the new
data in which the 31th bit representing the sign bit 821 is “1”
and all other bits are “0” is generated and the generated
condition data is supplied to the sign bit extraction section
220. Then, the sign bit extraction section 220 extracts the sign
bit 821 from the condition data through the logical product
(AND) arithmetic operation on the basis of the new condition
data supplied from the shift section 240 and the bit string
supplied from the bit string holding section 210. In this man-
ner, the sign data in which the sign bit 821 is “1” and the entire
integer part 822 is “0” is generated and the generated sign data
is supplied to the inverting section 230.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the data supplied
from the sign bit extraction section 220 and the bit string
supplied from the bit string holding section 210. The inverting
section 230 inverts the bit which represents the sign bit of the
condition data of the data supplied from the sign bit extraction
section 220. In this manner, the sign data in which the sign bit
821 is “0” and the entire integer part 822 is “0” is generated
and the generated sign data is supplied to the sign adding
section 300. The sign adding section 300 then adds the sign to
the object data through the arithmetic addition (ADD) opera-
tion on the basis of the object data supplied via the signal line
149 and the sign data supplied from the inverting section 230.
Accordingly, “0” is added to “1” of the sign bit 811 to gen-
erate the object data in which the sign bit 811 is not converted.
If the sign bit of the condition data is “1” and the sign bit of
object data is “0”, since “0” of the sign bit 821 is added to “0”
of'the sign bit 811, the object data in which the sign bit 811 is
not converted is generated.

Next, an operation of the processor 100 of a seventh exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 15 is a flowchart illustrating exemplary steps in a sign
addition process in the seventh exemplary configuration of
the processor 100 according to the first embodiment of the
invention.

First, the 8-bit length condition data and the 32-bit length
object data are loaded into the register 140 from the memory
120 (step S911). Next, the shift section 240 shifts the sign bit
of the condition data to the left by 24 bits to generate new
condition data (step S922). Next, the sign bit extraction sec-
tion 220 extracts the sign bit of the condition data supplied
from the shift section 240 (step S915). The inverting section
230 then inverts the extracted sign bit (step S927). Subse-
quently, the sign adding section 300 adds the sign to the object
data (step S919).

Thus, since the processor 100 includes the shift section 240
and the inverting section 230, even if the condition data and
the object data have different bit lengths, the sign can be

10

15

20

25

30

35

40

45

50

55

60

65

18

added to the object data on the basis of the condition data and
the object data. That is, even if the condition data and the
object data have different bit lengths, the processor 100 can
add the sign to the object data if the sign bit of the condition
data is “0” as in the processor 100 illustrated in FIG. 4.
Eighth Exemplary Configuration of Processor

FIG. 16 is a block diagram illustrating an eighth exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 2 except that a condition
data generating section 250 is included. Since the present
processor 100 has the same configuration as that illustrated in
FIG. 2 except for the condition data generating section 250,
similar components will be denoted by similar reference
numerals and description thereof will be omitted. The sign
data generating section 200 illustrated in FIG. 16 is an exem-
plary sign data generating section recited in the claims.

The processor 100 supplies, to the condition data generat-
ing section 250, the second condition data via the first condi-
tion data and the signal line 148 via the signal line 147.

The condition data generating section 250 generates new
condition data on the basis of the condition data supplied via
the signal line 147 and the signal line 148. The condition data
generating section 250 is implemented by, for example, the
arithmetic subtracting circuit which performs an arithmetic
subtraction (SUB) operation of the second condition data
from the first condition data. The condition data generating
section 250 is implemented by, for example, the AND opera-
tion circuit which performs the logical product (AND) arith-
metic operation of the first condition data and the second
condition data. The condition data generating section 250 is
implemented by, for example, the OR operation circuit which
performs the logical sum (OR) arithmetic operation of the
first condition data and the second condition data. The con-
dition data generating section 250 supplies the generated new
condition data to the sign bit extraction section 220. Although
the condition data generating section 250 described above
generates new condition data on the basis of the two condition
data by a single arithmetic circuit, two or more arithmetic
circuits may alternatively be combined to generate new con-
dition data on the basis of two or more condition data. Alter-
natively, the object data can be supplied to the condition data
generating section 250 as the condition data.

In this configuration, it is assumed that the condition data
generating section 250 is implemented by the arithmetic sub-
tracting circuit. It is assumed that the sign bit of the first
condition data is “1” and a value represented by the integer
part is “5,” the sign bit of the second condition data is “1”” and
a value represented by the integer part is “3” and the sign bit
of the single-precision floating-point type data is “1.”

In this case, the condition data generating section 250
subtracts the value of the second condition data from the value
of the first condition data. In particular, “-3” is subtracted
from “-5” to obtain“-2,” and the new condition data with the
sign bit of “1” is generated and supplied to the sign bit extrac-
tion section 220. Then, the sign bit extraction section 220
extracts the sign bit 821 from the new condition data through
the logical product (AND) arithmetic operation on the basis
of the new condition data supplied via the condition data
generating section 250 and the bit string supplied from the bit
string holding section 210. In this manner, the sign data in
which the sign bit 821 is “1” and the integer part 822 is “0” is
generated and the generated sign data is supplied to the sign
adding section 300. The sign adding section 300 then adds the
sign to the object data through the arithmetic addition (ADD)
operation on the basis of the object data supplied via the
signal line 149 and the sign data supplied from the sign bit

US 9,223,543 B2

19

extraction section 220. Accordingly, the object data in which
the sign bit 811 is converted into “0” when “1” is added to “1”
and the exponent part 812 and the mantissa part 813 are not
converted is generated.

In this configuration, it is assumed that the condition data
generating section 250 is implemented by the arithmetic sub-
tracting circuit. It is assumed that the sign bit of the first
condition data is “0” and a value represented by the integer
part is “5,” the sign bit of the second condition data is “1”” and
a value represented by the integer part is “3” and the sign bit
of the single-precision floating-point type data is “1.”

In this case, the condition data generating section 250
subtracts the value of the second condition data from the value
of the first condition data. In particular, “-3” is subtracted
from 5 to obtain “8,” and the new condition data with the
sign bit of “0” is generated and supplied to the sign bit extrac-
tion section 220. Then, the sign bit extraction section 220
extracts the sign bit 821 from the new condition data through
the logical product (AND) arithmetic operation on the basis
of the new condition data supplied from condition data gen-
erating section 250 and the bit string supplied from the bit
string holding section 210. In this manner, the sign data in
which the sign bit 821 is “0” and all the integer part 822 are
“0” is generated and the generated sign data is supplied to the
sign adding section 300. The sign adding section 300 then
adds the sign to the object data through the arithmetic addition
(ADD) operation on the basis of the object data supplied via
the signal line 149 and the sign data supplied from the sign bit
extraction section 220. Accordingly, the object data in which
the sign bit 811 is not converted with “0” being added to “1”
and neither the exponent 812 nor the fraction 813 are con-
verted is generated.

In this manner, since the processor includes the arithmetic
subtracting circuit as the condition data generating section
250, the processor 100 can convert the sign of the object data
if the first condition data is smaller than the second condition
data.

Since the processor 100 includes the AND operation circuit
as the condition data generating section 250 in place of the
arithmetic subtracting circuit, the sign of object data can be
converted if both the first condition data and the second con-
dition data are negative. Since the processor 100 includes the
OR operation circuit as the condition data generating section
250, the sign of the object data can be converted if either of the
first condition data or the second condition data is negative.

Next, an operation of the processor 100 of an eighth exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 17 is a flowchart illustrating exemplary steps in a sign
addition process in the eighth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the first condition data, the second condition data and
the object data are loaded into the register 140 from the
memory 120 (step S911). Next, the condition data generating
section 250 generates new condition data on the basis of the
first condition data and the second condition data (step S923).
Next, the sign bit extraction section 220 extracts the sign bit of
the new condition data (step S924). Subsequently, the sign
adding section 300 adds the sign to the object data (step
S919).

Since the processor 100 includes the condition data gener-
ating section 250, the sign can be added to the object data on
the basis of the plural condition data.

40

45

55

20

Ninth Exemplary Configuration of Processor

FIG. 18 is a block diagram illustrating a ninth exemplary
configuration of the processor 100 according to the first
embodiment of the invention. The present processor 100 is
the same as that illustrated in FIG. 16 except that the sign data
generating section 200 includes the inverting section 230
illustrated in FIG. 2. Since the present processor 100 has the
same configuration as that illustrated in FIG. 16 except for the
inverting section 230, similar components will be denoted by
similar reference numerals and description thereof will be
omitted. The sign data generating section 200 illustrated in
FIG. 18 is an exemplary sign data generating section recited
in the claims.

The inverting section 230 inverts the sign bit supplied from
the sign bit extraction section 220 on the basis of the bit string
supplied from the bit string holding section 210. The inverting
section 230 supplies the sign bit with an inverted sign to the
sign adding section 300 as the sign data.

In this configuration, it is assumed that the condition data
generating section 250 is implemented by the arithmetic sub-
tracting circuit. It is assumed that the sign bit of the first
condition data is “1” and a value represented by the integer
part is “3,” the sign bit of the second condition data is “1”” and
a value represented by the integer part is “5” and the sign bit
of the single-precision floating-point type data is “1.”

In this case, the condition data generating section 250
subtracts the value of the second condition data from the value
of the first condition data. In particular, “-5” is subtracted
from “-3” to obtain“-2,” and the new condition data with the
sign bit of “0” is generated and supplied to the sign bit extrac-
tion section 220. Then, the sign bit extraction section 220
extracts the sign bit 821 from the new condition data through
the logical product (AND) arithmetic operation on the basis
of the new condition data supplied from condition data gen-
erating section 250 and the bit string supplied from the bit
string holding section 210. In this manner, the sign data in
which the sign bit 821 is “0” and the entire integer part 822 is
“0” is generated and the generated sign data is supplied to the
inverting section 230.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the data supplied
from the sign bit extraction section 220 and the bit string
supplied from the bit string holding section 210. The inverting
section 230 inverts the bit which represents the sign bit of the
condition data of the data supplied from the sign bit extraction
section 220. In this manner, the sign data in which the sign bit
821 is “1” and the entire integer part 822 is “0” is generated
and the generated sign data is supplied to the sign adding
section 300. The sign adding section 300 then adds the sign to
the object data through the arithmetic addition (ADD) opera-
tion on the basis of the object data supplied via the signal line
149 and the sign data supplied from the inverting section 230.
Accordingly, the object data in which the sign bit 811 is
converted into “0” when “1” is added to “1”* and the exponent
part 812 and the mantissa part 813 are not converted is gen-
erated.

In this configuration, it is assumed that the condition data
generating section 250 is implemented by the arithmetic sub-
tracting circuit. It is assumed that the sign bit of the first
condition data is “0” and a value represented by the integer
part is “3,” the sign bit of the second condition data is “0” and
a value represented by the integer part is “5” and the sign bit
of the single-precision floating-point type data is “1.”

In this case, the condition data generating section 250
subtracts the value of the second condition data from the value
of'the first condition data. In particular, “5” is subtracted from
“3” 10 obtain“-2,” and the new condition data with the sign bit

US 9,223,543 B2

21

of “1” is generated and supplied to the sign bit extraction
section 220. Then, the sign bit extraction section 220 extracts
the sign bit 821 from the new condition data through the
logical product (AND) arithmetic operation on the basis of
the new condition data supplied from condition data generat-
ing section 250 and the bit string supplied from the bit string
holding section 210. In this manner, the sign data in which the
sign bit 821 is “1” and the integer part 822 is “0” is generated
and the generated sign data is supplied to the inverting section
230.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the data supplied
from the sign bit extraction section 220 and the bit string
supplied from the bit string holding section 210. The inverting
section 230 inverts the bit which represents the sign bit of the
condition data of the data supplied from the sign bit extraction
section 220. In this manner, the sign data in which the sign bit
821 is “0” and the entire integer part 822 is “0” is generated
and the generated sign data is supplied to the sign adding
section 300. The sign adding section 300 then adds the sign to
the object data through the arithmetic addition (ADD) opera-
tion on the basis of the object data supplied via the signal line
149 and the sign data supplied from the inverting section 230.
Accordingly, the object data in which the sign bit 811 is not
converted with “0” being added to “1” and neither the expo-
nent 812 nor the fraction 813 are converted is generated.

Since the processor 100 includes the arithmetic subtracting
circuit as the condition data generating section 250, the sign
of object data can be converted if the first condition data is
larger than the second condition data.

Since the processor 100 includes the AND operation circuit
as the condition data generating section 250 in place of the
arithmetic subtracting circuit, the sign of object data can be
converted if both the first condition data and the second con-
dition data are positive. Since the processor 100 includes the
OR operation circuit as the condition data generating section
250, the sign of the object data can be converted if either of the
first condition data or the second condition data is positive.

Next, an operation of the processor 100 of a ninth exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 19 is a flowchart illustrating exemplary steps in a sign
addition process in the ninth exemplary configuration of the
processor 100 according to the first embodiment of the inven-
tion.

First, the first condition data, the second condition data and
the object data are loaded into the register 140 from the
memory 120 (step S911). Next, new condition data is gener-
ated by the condition data generating section 250 on the basis
of'the first condition data and the second condition data (step
S923). Next, the sign bit of the new condition data is extracted
by the sign bit extraction section 220 (step S924). The
extracted sign bit is then inverted by the inverting section 230
(step S927). Subsequently, the sign is added to the object data
by the sign adding section 300 (step S919).

Since the processor 100 includes the condition data gener-
ating section 250, the sign can be added on the basis of the
object data of the plural condition data.

Tenth Exemplary Configuration of Processor

FIG. 20 is a block diagram illustrating a tenth exemplary
configuration of the processor 100 according to the first
embodiment of the invention. Since the present processor 100
has the same configuration as that illustrated in FI1G. 2, similar
components will be denoted by similar reference numerals
and description thereof will be omitted. The sign data gener-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

ating section 200 illustrated in FIG. 20 is an exemplary sign
data generating section recited in the claims.

The sign data generating section 200 includes a bit string
holding section 210, an inverting section 230, a sign bit
extraction sections 260 and 270, and a comparing section 280.
The data supplied from the signal line 147 is called a first
condition data and the data supplied from the signal line 148
is called as a second condition data.

The sign bit extraction section 260 extracts, as the condi-
tion, the sign bit representing the sign in the first condition
data on the basis of the first condition data supplied from the
signal line 147 and the bit string supplied from the bit string
holding section 210. The sign bit extraction section 260 is
implemented by the AND operation circuit which performs
the logical product (AND), for example. The sign bit extrac-
tion section 220 supplies the extracted sign bit to the inverting
section 230.

The sign bit extraction section 270 extracts, as the condi-
tion, the sign bit representing the sign in the second condition
data on the basis of the second condition data supplied from
the signal line 148 and the bit string supplied from the bit
string holding section 210. The sign bit extraction section 270
is implemented by the AND operation circuit which performs
the logical product (AND), for example. The sign bit extrac-
tion section 220 supplies the extracted sign bit to the compar-
ing section 280.

The inverting section 230 inverts the sign bit extracted from
the first condition data supplied from the sign bit extraction
section 260 and the sign bit extracted from first condition data
on the basis of the bit string supplied from the bit string
holding section 210. The inverting section 230 supplies the
inverted sign bit to the comparing section 280.

The comparing section 280 measures the extracted sign
bits and generates a new sign bit. The comparing section 280
is implemented by the AND operation circuit which performs
the logical product (AND) arithmetic, for example. The com-
paring section 280 is implemented by the OR operation cir-
cuit which performs the logical sum (OR) arithmetic, for
example. The comparing section 280 supplies the generated
new sign bit to the sign adding section 300 as the sign data.

In this configuration, it is assumed that the comparing
section 280 is implemented by the AND operation circuit. [t is
assumed that the sign bit of the first condition data is ““0,” the
sign bit of the second condition data is “1”” and the sign bit of
the single-precision floating-point type data is “1.”

The sign bit extraction section 260 extracts the sign bit 821
from the first condition data through the logical product
(AND) arithmetic operation on the basis of the first condition
data supplied via the signal line 147 and the bit string supplied
from the bit string holding section 210. Accordingly, the first
data in which the bit representing the sign bit is “0” and all
other bits are “0” is generated. The sign bit extraction section
270 extracts the sign bit 821 from the second condition data
through the logical product (AND) arithmetic operation on
the basis of the second condition data supplied via the signal
line 148 and the bit string supplied from the bit string holding
section 210. Accordingly, the second data in which the bit
representing the sign bit is “1” and all other bits are “0” is
generated.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the first data sup-
plied from the sign bit extraction section 260 and the bit string
supplied from the bit string holding section 210. The inverting
section 230 inverts the bit which represents the sign bit of the
condition data of the first data supplied from the sign bit
extraction section 260. Accordingly, the first data in which the
bit representing the sign bit is “1”” and all other bits are “0” is

US 9,223,543 B2

23

generated. Then, the comparing section 280 compares the
first data with the second data through the logical product
(AND) operation on the basis of the first data supplied from
the inverting section 230 and the second data supplied from
the sign bit extraction section 270. In this manner, the sign
data in which the sign bit 821 is “1” and the entire integer part
822 is “0” is generated and the generated sign data is supplied
to the sign adding section 300.

The sign adding section 300 then adds the sign to the object
data through the arithmetic addition (ADD) operation on the
basis of the object data supplied via the signal line 149 and the
sign data supplied from the comparing section 280. In this
manner, “1” of the sign bit 821 is added to “1” of the sign bit
811 to generate the object data in which the sign bit 811 is
converted into “0.” The exponent part 812 and the mantissa
part 813 are not converted at this time. [fthe sign bit of the first
condition data is ““0,” the sign bit of the second condition data
is “1,” the sign bit 811 of the object data is ““0,” the sign bit 811
is converted from “0” into “1” and other bits are not con-
verted.

In this configuration, it is assumed that the comparing
section 280 is implemented by the AND operation circuit. It is
assumed that the sign bit of the first condition data is “1,” the
sign bit of the second condition data is “1” and the sign bit of
the single-precision floating-point type data is “1.”

The sign bit extraction section 260 extracts the sign bit 821
from the first condition data through the logical product
(AND) arithmetic operation on the basis of the first condition
data supplied via the signal line 147 and the bit string supplied
from the bit string holding section 210. Accordingly, the first
data in which the bit representing the sign bit is “1” and all
other bits are “0” is generated. The sign bit extraction section
270 extracts the sign bit 821 from the second condition data
through the logical product (AND) arithmetic operation on
the basis of the second condition data supplied via the signal
line 148 and the bit string supplied from the bit string holding
section 210. Accordingly, the second data in which the bit
representing the sign bit is “1” and all other bits are “0” is
generated.

The inverting section 230 then performs the arithmetic
addition (ADD) operation on the basis of the first data sup-
plied from the sign bit extraction section 260 and the bit string
supplied from the bit string holding section 210. The inverting
section 230 inverts the bit which represents the sign bit of the
condition data of the first data supplied from the sign bit
extraction section 260. Accordingly, the first data in which the
bit representing the sign bit is “0” and all other bits are “0” is
generated. Then, the comparing section 280 compares the
first data with the second data through the logical product
(AND) operation on the basis of the first data supplied from
the inverting section 230 and the second data supplied from
the sign bit extraction section 270. In this manner, the sign
data in which the sign bit 821 is “0” and the entire integer part
822 is “0” is generated and the generated sign data is supplied
to the sign adding section 300.

The sign adding section 300 then adds the sign to the object
data through the arithmetic addition (ADD) operation on the
basis of the object data supplied via the signal line 149 and the
sign data supplied from the comparing section 280. Accord-
ingly, “0” of the sign bit 821 is added to “1” of the sign bit 811
to generate the object data in which the sign bit 811 is not
converted.

If the sign bit of the first condition data is “1,” the sign bit
of the second condition data is “1,” the sign bit 811 of the
objectdatais “0,” “0” of the sign bit 821 is added to “0” of the
sign bit 811. Accordingly, the object data in which the sign bit
811 is not converted is generated.

10

15

20

25

30

35

40

45

50

55

60

65

24

If the sign bit of the first condition data is “1,” the sign bit
of the second condition data is “0,” the sign bit 811 of the
objectdatais “1,”“0” of the sign bit 821 is added to “1” of the
sign bit 811. Accordingly, the object data in which the sign bit
811 is not converted is generated.

If the sign bit of the first condition data is “1,” the sign bit
of the second condition data is “0,” the sign bit 811 of the
objectdata is “0,” “0” of the sign bit 821 is added to “0” of the
sign bit 811. Accordingly, the object data in which the sign bit
811 is not converted is generated.

If the sign bit of the first condition data is “0,” the sign bit
of the second condition data is “0,” the sign bit 811 of the
objectdatais “1,”“0” of the sign bit 821 is added to “1” of the
sign bit 811. Accordingly, the object data in which the sign bit
811 is not converted is generated.

If the sign bit of the first condition data is “0,” the sign bit
of the second condition data is “0,” the sign bit 811 of the
objectdata is “0,” “0” of the sign bit 821 is added to “0” of the
sign bit 811. Accordingly, the object data in which the sign bit
811 is not converted is generated.

Next, an operation of the processor 100 of a tenth exem-
plary configuration of the processor 100 according to the first
embodiment of the invention will be described with reference
to the drawings.

FIG. 21 is a flowchart illustrating exemplary steps in a sign
addition process in the tenth exemplary configuration of the
processor 100 according to an embodiment of the invention.

First, the first condition data, the second condition data and
the object data are loaded into the register 140 from the
memory 120 (step S911). Next, the sign bit extraction section
260 extracts the sign bit from the first condition data and the
sign bit extraction section 270 extracts the sign bit from the
second condition data (Step S932). Next, the inverting section
230 inverts the sign bit extracted by the sign bit extraction
section 260 (step S933). Next, the comparing section 280
generates the sign data on the basis of the sign bit inverted by
the inverting section 230 and the sign bit extracted by the sign
bit extraction section 270 (step S934). Subsequently, the sign
adding section 300 adds the sign to the object data (step
S919).

Accordingly, the processor 100 uses the AND operation
circuit as the comparing section 280 in the sign data generat-
ing section 200 in order to add a sign to the object data if the
first condition data is not smaller than “0” and the second
condition data is smaller than “0.”

The processor 100 uses the OR operation circuit as the
comparing section 280 in place of the AND operation circuit,
in order to add a sign to the object data if the first condition
data is not smaller than “0” or the second condition data is
smaller than “0.”

According to the first embodiment of the invention, the
sign of the condition-added floating-point type data can be
converted at high speed by addition of the sign to floating-
point type data through the integer arithmetic operation.

Although some modified embodiments regarding the sign
data generating section 200 have been described in the first
embodiment of the invention, various other modifications
may be made through combinations of the arithmetic circuits
other than those described.

2. Second Embodiment
Exemplary Configuration of Frame in MP3 Audio Data

In the second embodiment, an example in which an
embodiment of the invention is applied to a specified appli-
cation will be described.

FIG. 22 is a schematic diagram illustrating a data structure
of'a frame in MP3 data which is audio data compressed on the
basis of an MP3 (Moving Picture Experts Group (MPEG) 1

US 9,223,543 B2

25
audio layer 3) standard. A frame 860 is the minimum unit for
decoding MP3 data. The frame 860 includes a header 861, an
error check 862, an audio data 863 and an ancillary data 864.

The header 861 is the data representing content of the
frame. The header 861 is 32-bit data. The error check 862 is
the data for detecting errors in the data of the frame through
cyclic redundancy check. The error check 862 is 16-bit data.
The error check 862 is the data for detecting errors and is thus
not indispensable. The audio data 863 includes audio infor-
mation. The audio data 863 includes bit assignment informa-
tion, side information including Huftiman table information,
scale factor information and Huffiman code data information.
The ancillary data 864 is the data inserted if the audio data 863
does not reach an end of the frame.

Next, an exemplary configuration of the decoding device
900 which decodes the MP3 data will be described with
reference to the drawings.

Exemplary Configuration of Decoding Device

FIG. 23 is a block diagram illustrating an exemplary con-
figuration of a decoding device 900 which decodes the MP3
data. The decoding device 900 decodes, from the MP3 data
supplied via the signal line 901, the pulse code modulation
(PCM) data which is the audio signals quantized to a certain
step width and outputs the decoded data via the signal line
909. The decoding device 900 includes a bit stream decom-
position section 910, a scale factor decoder 920, a Huffman
decoding section 930, an inverse quantization section 940 and
a hybrid filter bank (HFB) section 950.

The bit stream decomposition section 910 extracts, from
the MP3 data supplied via the signal line 901, the bit assign-
ment information, side information including the Huffman
table information, the scale factor information and the Huft-
man code data information. The bit stream decomposition
section 910 supplies the extracted bit assignment information
to the scale factor decoder 920, the Huffman decoding section
930 and the inverse quantization section 940. The bit stream
decomposition section 910 supplies the extracted side infor-
mation including the Huffman table information and the bit
assignment information to the scale factor decoder 920, the
Huffman decoding section 930 and the inverse quantization
section 940. The bit stream decomposition section 910 sup-
plies the extracted scale factor information to the scale factor
decoder 920. The bit stream decomposition section 910 sup-
plies the extracted Huffman code data information to the
Huffman decoding section 930.

The scale factor decoder 920 decodes the scale factor on
the basis of the bit assignment information, the scale factor
information and the side information including Huffman
table information supplied from the bit stream decomposition
section 910. The scale factor decoder 920 supplies the
decoded scale factor to the inverse quantization section 940.

The Huffman decoding section 930 decodes the Huffman
code data on the basis of the bit assignment information, the
Huffman code data information and the side information
including Huffman table information supplied from the bit
stream decomposition section 910. The Huftman decoding
section 930 supplies the decoded Huffman code data to the
inverse quantization section 940.

The inverse quantization section 940 inverse-quantizes the
Huffman code data on the basis of the bit assignment infor-
mation, the side information including the Huffman table
information, the scale factor and the Huffman code data, and
generates inverse quantization data. The inverse quantization
section 940 supplies the generated inverse quantization data
to the HFB section 950.

The HFB section 950 restores the audio signals to PCM
data on the basis of the inverse quantization data supplied

10

15

20

25

30

35

40

45

50

55

60

65

26

from the inverse quantization section 940. The HFB section
950 includes a butterfly computation section 951, an inverse
modified discrete cosine transform (IMDCT) computation
section 952 and a subband composition section 953.

The butterfly computation section 951 removes aliasing
through butterfly computation on the basis of the inverse
quantization data supplied from the inverse quantization sec-
tion 940. The butterfly computation section 951 supplies the
aliasing-removed data to the IMDCT computation section
952.

The IMDCT computation section 952 converts the data in
the frequency domain of the audio signal into the data in the
time domain through the inverse modified discrete cosine
transform (IMDCT) on the basis of the aliasing-removed data
supplied from the butterfly computation section 951. The
IMDCT computation section 952 supplies the converted data
to the subband composition section 953.

The subband composition section 953 generates the PCM
data through subband composition on the basis of the data in
the time domain supplied from the IMDCT computation sec-
tion 952. The subband composition section 953 outputs the
generated PCM data to the signal line 909.

Next, an operation of the decoding device 900 which
decodes the MP3 data will be described with reference to the
drawings.

Exemplary Operation of Decoding Device

FIG. 24 is a flowchart illustrating exemplary steps of a
decoding procedure in the decoding device 900 which
decodes the MP3 data.

First, the bit stream decomposition section 910 extracts the
header from the frame of the MP3 data supplied via the signal
line 901 and analyzes the extracted header (step S941). Next,
the bit stream decomposition section 910 decodes, on the
basis of the analyzed header, the side information from the
frame of the MP3 data and extracts the Huffman code data
information and the scale factor information from the frame
of the MP3 data (step S942). Next, the scale factor decoder
920 decodes the scale factor on the basis of the scale factor
information from the bit stream decomposition section 910
(step S943). Next, the Huffman decoding section 930 decodes
the Huffman code data on the basis of the Huffman code data
information supplied from the bit stream decomposition sec-
tion 910 (step S944). Next, the inverse quantization section
940 performs the inverse quantization process of the Huffman
code data on the basis of side information, the scale factor and
the Huffman code data, and thus generates inverse quantiza-
tion data (step S950). The inverse quantization data is gener-
ated on the basis of the following Equation (2).

xr(i, j)=sign(is(i, j))xlis(i,)1**x27

0O=is31, 0sj<17 ()]

wherein xr (i, j) is a calculating result of the inverse quan-
tization process; is (i, j) is the Huffman code data; P is a
constant calculated from the side information and the scale
factor; sign (is (i, j)) is the sign of the Huffman code data; iis
a subband bandwidth number; and j is a sample number of
each subband output.

Next, on the basis of the inverse quantization data from the
inverse quantization section 940, the butterfly computation
section 951 performs the butterfly computation process and
generates the aliasing-removed data (step S946). Next, the
IMDCT computation section 952 converts the data in the
frequency domain from the butterfly computation section 951
into the data in the time domain (step S947). Next, the sub-
band composition section 953 converts the data in the time
domain from the IMDCT computation section 952 into the

US 9,223,543 B2

27
PCM data (step S948). Next, the generated PCM data is
supplied via the signal line 909 (step S949).

Next, the process of step S950 according to the present
embodiment of the invention will be described with reference
to the drawings.

FIG. 25 is a flowchart illustrating exemplary steps in an
inverse quantization process (step S950) by an inverse quan-
tization section 940 according to the second embodiment of
the invention. Here, it is assumed that the inverse quantization
process is performed by the processor 100 illustrated in FIG.
2.

First, the frame of the MP3 data is loaded from the memory
120 to the register 140 (step S951). Next, a loop control
variable 1 of the inverse quantization process is initialized to
“0” (step S952). Next, a loop control variable j of the inverse
quantization process is initialized to “0” (step S953). Next,
the processes other than the sign process among the inverse
quantization processes with respect to the frame of the MP3
data are performed through the floating-point arithmetic
operation (step S954). In step S954, the floating-point arith-
metic operation is performed on the basis of the following
Equation (3) as the processes other than the sign process in the
inverse quantization process.

xr_abs=lis(i, j)I*¥3x2?

3

wherein xr_abs is a calculating result of the parts other than
the sign in the inverse quantization process.

Next, the sign data generating section 200 extracts the sign
bit of the floating-point number (step S955). Next, the sign
adding section 300 adds the sign to the floating-point number
calculated by the floating-point arithmetic operation (step
S956).

Next, it is determined whether or not the loop control
variable j is a predetermined threshold j (step S957). If the
loop control variable j is smaller than the threshold j, “1” is
added to the loop control variable j (step S959) and the routine
returns to step S954 where the process is repeated. If the loop
control variable j equals to the threshold j, it is determined
whether or not a loop control variable i is the predetermined
threshold j (step S958). Ifthe loop control variable i is smaller
than the threshold j, “1” is added to the loop control variable
i (step S960) and the routine returns to step S953 where the
process is repeated.

According to the second embodiment of the invention, the
processor 100 can be applied to the inverse quantization arith-
metic operation in the inverse quantization section 940.

3. Third Embodiment
Exemplary Configuration of Processor Including Integer
Register and Floating-point Register

FIG. 26 is a block diagram illustrating an exemplary con-
figuration of the processor 100 according to the third embodi-
ment of the invention. Since the present processor 100 has the
same configuration as that illustrated in FIG. 2 except for an
integer register 180 and a floating-point register 190, similar
components will be denoted by similar reference numerals
and description thereof will be omitted.

The processor 100 illustrated in FIG. 26 includes the inte-
ger register 180 and the floating-point register 190 in place of
the register 140 of the processor 100 illustrated in FIG. 2.

The integer register 180 temporarily keeps the data neces-
sary for processes in the integer arithmetic operation section
150 and the sign determining section 160. The integer register
180 temporarily keeps, for example, the object data and the
condition data to be processed in the sign determining section
160. The integer register 180 temporarily keeps the object
data to be processed in the sign determining section 160 via
the bus 130.

10

15

20

25

30

35

40

45

50

55

60

65

28

The integer register 180 supplies the object data processed
in the sign determining section 160 to the floating-point reg-
ister 190. The integer register 180 supplies the temporarily
kept object data to the sign determining section 160 via the
signal line 149. The integer register 180 supplies the tempo-
rarily kept condition data to the sign determining section 160
via the signal line 148.

The floating-point register 190 temporarily keeps the data
necessary for the process in the floating-point arithmetic
operation section 170 and the object data. The floating-point
register 190 temporarily keeps, for example, the data neces-
sary for the process in the floating-point arithmetic operation
section 170 from the memory 120 supplied via the bus 130.
The floating-point register 190 temporarily keeps the data
regarding the result of the process in the floating-point arith-
metic operation section 170. The floating-point register 190
supplies the temporarily kept object data to the integer regis-
ter 180.

As described above, even if the processor 100 includes the
integer register 180 and the floating-point register 190 pro-
vided separately, the sign can be added to the object data as
illustrated in FIG. 2 on the basis of the object data, which is
the condition data, and the floating-point type data, which is
the integer type data.

Next, an operation of the processor 100 according to the
third embodiment of the invention will be described with
reference to the drawings.

Exemplary Operation of Processor

FIG. 27 is a flowchart illustrating exemplary steps in a sign
addition process of the processor 100 according to the third
embodiment of the invention.

First, the condition data is loaded into the integer register
180 from the memory 120 and the object data is loaded into
the floating-point register 190 from the memory 120 (step
S971). Next, the object data is transmitted to the integer
register 180 from the floating-point register 190 (step S972).
Next, the bit string holding section 210 and the sign bit
extraction section 220 extract the sign bit of the condition data
(step S973). Next, the sign adding section 300 adds the sign to
the object data (step S974). Next, the signed object data is
transmitted to the floating-point register 190 from the integer
register 180 (step S975).

As described above, according to the third embodiment of
the invention, the sign can be added to the object data, which
is the floating-point type data, through the integer arithmetic
operation even if the integer register and the floating-point
register are provided separately.

3. Fourth Embodiment
Exemplary Configuration of Compiling System

FIG. 28 is a block diagram illustrating an exemplary con-
figuration of a compiling system 500 according to the fourth
embodiment of the invention. A compiling system 500 com-
piles input programs and includes a source program storage
section 510, a compiler 600 and an object program storage
section 530.

The source program storage section 510 stores a source
program to be compiled. The source program includes, for
example, the code for adding the sign to the object data. The
source program storage section 510 supplies the stored source
program to the compiler 600. The source program storage
section 510 is an exemplary source program storage section
recited in the claims.

The compiler 600 generates the object program, which is
the machine language program, by compiling the source pro-
gram read out of the source program storage section 510. The
compiler 600 supplies the generated object program to the
object program storage section 530. The compiler 600

US 9,223,543 B2

29

includes a source program analysis section 610, an optimiz-
ing section 620 and a code generating section 630.

The source program analysis section 610 conducts, for
example, a morphological analysis and a syntactic analysis on
the basis of the source program read out of the source program
storage section 510. The source program analysis section 610
thus generates an intermediate code in a format called an
intermediate expression code that is necessary for the process
of the optimizing section 620. The source program analysis
section 610 supplies the generated intermediate code to the
optimizing section 620. The source program analysis section
610 includes the program analysis section 611 and the sign
addition code extraction section 612.

The program analysis section 611 generates the interme-
diate code by conducting, for example, the morphological
analysis and the syntactic analysis on the basis of the source
program supplied from the source program storage section
510. The program analysis section 611 then supplies a code
for generating the intermediate code to the sign addition code
extraction section 612.

The sign addition code extraction section 612 extracts the
code for adding the sign to the object data among the codes
supplied from the program analysis section 611 and generates
the intermediate code. The sign addition code extraction sec-
tion 612 supplies the generated intermediate code to the opti-
mizing section 620. The sign addition code extraction section
612 is an exemplary sign addition code extraction section
recited in the claims.

The optimizing section 620 performs program optimiza-
tion on the basis of the intermediate code supplied from the
sign addition code extraction section 612. The program opti-
mization includes optimization for improvement in execution
speed and optimization for reduction of code size. The opti-
mizing section 620 supplies the optimized program to the
code generating section 630. The optimizing section 620
includes a program optimizing section 621, a sign addition
code generating section 622 and a sign addition code convert-
ing section 623.

The program optimizing section 621 optimizes the pro-
gram on the basis of the intermediate code supplied from the
sign addition code extraction section 612. The program opti-
mizing section 621 supplies the optimized program to the
sign addition code generating section 622.

The sign addition code generating section 622 generates
the code to be converted into the code extracted in the sign
addition code converting section 623 on the basis of the code
extracted by the sign addition code extraction section 612.
The code to be converted is, for example, the code for imple-
menting the arithmetic operation of the sign data generating
section 200 illustrated in FIG. 2 with the assembly language
and the code for implementing the arithmetic operation of the
sign adding section 300 illustrated in FIG. 2 with the assem-
bly language. That is, the code for implementing the arith-
metic of the sign data generating section 200 illustrated in
FIG. 2 with the assembly language is the code for generating
the sign data for adding the sign to the object data on the basis
of'the condition obtained by extracting the condition included
in the condition data. The code for implementing the arith-
metic of the sign adding section 300 illustrated in FIG. 2 with
the assembly language is the code for adding the sign to the
object data on the basis of the sign data and the object data
through the integer arithmetic operation using the object data
as the integer type data. The sign addition code generating
section 622 supplies the generated code to the sign addition
code converting section 623 with the program for optimiza-

10

15

20

25

30

40

45

50

55

60

65

30

tion has been started. The sign addition code generating sec-
tion 622 is an exemplary sign addition code generating sec-
tion recited in the claims.

The sign addition code converting section 623 converts the
code extracted by the sign addition code extraction section
612 into the code generated by the sign addition code gener-
ating section 622. The sign addition code converting section
623 supplies the optimized program including the converted
code to the code generating section 630. The sign addition
code converting section 623 is an exemplary sign addition
code converting section recited in the claims.

The code generating section 630 generates the object pro-
gram, which is the code of the machine language program, on
the basis of the optimized program supplied from the sign
addition code converting section 623. The code generating
section 630 supplies the generated object program to the
object program storage section 530. The code generating
section 630 is an exemplary code generating section recited in
the claims.

The object program storage section 530 stores the object
program supplied from the code generating section 630.

An exemplary C language code (4) converted by the com-
piler 600 will be described below.

int a;
float b,c;
a=—4;
b=5.0f;
c=b;
if(a<0){
c=-b;

}

The above code is converted by, for example, the compiler
600 into a C language code represented by the following code

)

int atmp;
union{
float f;
int i;
X
a=—4;
b.f=5.01;
tmp=a&0x80000000;
c.i=b.i+tmp;

For example, when operation speed is measured using a
“MIPS R4000” system, the code (4) is converted into the code
(5) and thus the number of the cycles becomes “3” from “7”,
which corresponds to 57% improvement.

As described above, according to the compiler 600, the
code for adding the sign to the object data through conditional
branch and floating-point arithmetic operation can be con-
verted into the code for adding the sign through integer arith-
metic operation by compiling the source program.

Although the compiler 600 described above changes the
sign addition code automatically, an instruction receiving
section may alternatively be provided to externally control
the sign addition code extraction section 612, the sign addi-
tion code generating section 622 and the sign addition code
converting section 623.

Next, the process of the compiler 600 according to the
present embodiment of the invention will be described with
reference to the drawings.

FIG. 29 is a flowchart illustrating steps in a compile process
by a compiler 600 according to the fourth embodiment of the
invention.

US 9,223,543 B2

31

First, the compiler 600 reads the source program out of the
source program storage section 510 (step S981). Next, the
program analysis section 611 starts an analysis of the pro-
gram (step S982). Next, the sign addition code extraction
section 612 extracts the code for adding the sign on the basis
of'the object data and the condition data (step S983). Note that
step S983 is an exemplary sign addition code extraction step
recited in the claims. The program optimizing section 621
then starts program optimization (step S984). The sign addi-
tion code generating section 622 then generates the code for
implementing the arithmetic of the sign data generating sec-
tion 200 illustrated in FIG. 2 with the assembly language and
the code for implementing the arithmetic of the sign adding
section 300 illustrated in FIG. 2 with the assembly language
(step S985). Note that step S985 is an exemplary sign addition
code generation step recited in the claims. Next, the sign
addition code converting section converts the code extracted
by the sign addition code extraction section 612 into the code
generated by the sign addition code generating section 622
(step S986). Note that step S986 is an exemplary sign addition
code conversion step recited in the claims. Next, the code
generating section 630 generates the object program, which is
the code of the machine language program, on the basis of the
program including the converted code (step S987). Note that
step S987 is an exemplary code generation step recited in the
claims.

As described above, according to the fourth embodiment of
the invention, the code for adding the sign to the object data
through conditional branch and the floating-point arithmetic
operation can be automatically converted into the code for
adding the sign through the integer arithmetic operation.

The embodiments of the invention are illustrative only and
each of which corresponds to the matter to define the inven-
tion recited in the claims. However, the invention is not lim-
ited to embodiments described above and various modifica-
tions can be made without departing from a scope and spirit of
the invention.

The procedures described in the embodiments of the inven-
tion may be considered as methods with a series of steps, or
may be considered as a program or a recording medium that
stores the program for making the computer execute these
steps. Examples of the recording media include a compact
disc (CD), a minidisc (MD) a digital versatile disc (DVD), a
memory card and the Blu-ray Disc (registered trademark).

The present application contains subject matter related to
that disclosed in Japanese Priority Patent Application JP
2009-003018 filed in the Japan Patent Office on Jan. 9, 2009,
the entire content of which is hereby incorporated by refer-
ence.

It should be understood by those skilled in the art that
various modifications, combinations, sub-combinations and
alterations may occur depending on design requirements and
other factors insofar as they are within the scope of the
appended claims or the equivalents thereof.

What is claimed is:

1. A circuit comprising:

one or more processors operable to:

receive floating-point type object data to which a sign,
which represents a negative or positive value, is to be
added and condition data comprising a condition based
on which the sign is added;

extract the condition included in the condition data;

generate sign data for adding the sign to the floating-point
type object data based on the extracted condition;

20

40

45

50

55

60

32

align positions of the sign in the sign data and a sign in the
floating-point type object data with each other when the
condition data and the floating-point type object data
have different bit lengths;

and perform an integer arithmetic operation while the
floating-point type object data is being treated as integer-
type data to add the sign in the sign data to the floating-
point type object data based on the sign data, wherein the
positions of the sign in the sign data and the sign in the
floating-point type object data are aligned with each
other by shifting a sign bit extracted from the condition
data, and wherein a number of bits by which the sign bit
is shifted is based on a bit length of the condition data
and a bit length of the floating-point type object data,
wherein the one or more processors perform inverse
quantization when decoding Moving Pictures Experts
Group (MPEG) 1 audio layer 3 (MP3) data.

2. The circuit according to claim 1, wherein the one or more
processors perform the integer arithmetic operation while the
condition data is being treated as the integer-type data in a
case where the condition data is floating-point type data.

3. Thecircuit according to claim 1, wherein the one or more
processors extract the condition from the condition data using
a bit string.

4. The circuit according to claim 1, wherein the one or more
processors:

generate new condition data based on a plurality of pieces
of'the condition data; extract a new conditionincluded in
the new condition data;

and generate the sign data based on the extracted new
condition data.

5. The circuit according to claim 4, wherein the one or more

processors:

extract a plurality of conditions included in the plurality of
pieces of the condition data and generate the sign data
based at least on the plurality of conditions.

6. The circuitaccording to claim 1, wherein the one or more
processors: supply a bit string as the sign data irrespective of
a value of the condition data; and invert the sign of the float-
ing-point type object data based on the sign data.

7. The circuit according to claim wherein the one or more
processors: generate the sign data based on the sign bit.

8. The circuit according to claim 7, wherein the one or more
processors: extract the sign bit representing the sign in the
condition data as the condition; invert the sign of the extracted
sign hit to generate a new sign bit; and generate the sign data
based at least on the new sign bit.

9. A circuit comprising:

a register operable to supply floating-point type object data
to which a sign, which represents a negative or positive
value, is to be added and condition data comprising a
condition based on which the sign is added;

and one or more processors to:

extract the condition included in the condition data;

and generate sign data for adding the sign to the floating-
point type object data based on the extracted condition;

align positions of the sign in the sign data and a sign in the
floating-point type object data with each other when the
condition data and the floating-point, type object data
have bit lengths different from each other;

and perform an integer arithmetic operation while the
floating-point type object data is being treated as integer
type data to add the sign in the sign data to the floating-
point type object data based on the sign data,

wherein the positions of the sign in the sign data and the
sign in the floating-point type object data are aligned
with each other by shifting a sign bit extracted from the

US 9,223,543 B2

33

condition data, and wherein a number of bits by which
the sign bit is shifted is based on a bit length of the
condition data and a bit length of the floating-point type
object data, wherein the one or more processors perform
inverse quantization when decoding Moving Pictures
Experts Group (MPEG) 1 audio layer 3 (MP3) data.

10. A device comprising one or more processors for execut-

ing a compiler, the device comprising:

a memory to store a source program comprising a code for
adding a sign, which represents a negative or positive
value, to floating-point type object data based on the
floating-point type object data and condition data com-
prising a condition based on which the sign is added,
wherein the one or more processors:

read the source program;

extract the code from the source program;

generate a code for extracting the condition included in the
condition data;

generate sign data for adding the sign to the floating-point
type object data based on the extracted condition;

align positions of the sign in the sign data and a sign in the
floating-point type object data with each other when the
condition data and the floating-point type object data
have different bit lengths,

wherein the positions of the sign in the sign data and the
sign in the floating-point type object data are aligned
with each other by shifting a sign hit extracted from the
condition data, and wherein a number of bits by which
the sign bit is shifted is based on a bit length of the
condition data and a bit length of the floating-point type
object data;

generate a code for performing an integer arithmetic opera-
tion while the floating-point type object data is being
treated as integer type data;

and add the sign in the sign data to the floating-point type
object data based on the sign data,

wherein the one or more processors perform inverse quan-
tization when decoding Moving Pictures Experts Group
(MPEG) 1 audio layer 3 (MP3) data.

11. A method of compiling in a computer storing a source

program comprising a code, the method comprising:

the code, when executed by one or more processors, adding
a sign, which represents a negative or positive value, to
floating-point type object data based on the floating-

10

15

20

25

30

35

40

34

point type object data and condition data comprising a
condition based on which the sign is added:
extracting the code from the source program;
generating a code for extracting the condition included in
the condition data;
generating sign data for adding the sign to the floating-
point type object data based on the extracted condition;
aligning positions of the sign in the sign data and a sign in
the floating-point type object data with each other when
the condition data and the floating-point type object data
have different bit lengths,
wherein the positions of the sign in the sign data and the
sign in the floating-point type object data are aligned
with each other by shifting a sign bit extracted from the
condition data, and wherein a number of bits by which
the sign bit is shifted is based on a bit length of the
condition data and a bit length of the floating-point type
object data;
generate a code for performing an integer arithmetic opera-
tion while the floating-point type object data is being
treated as integer type data;
and add the sign in the sign data to the floating-point type
object data based on the sign data, wherein the one or
more processors perform inverse quantization when
decoding Moving Pictures Experts Group (MPEG) 1
audio layer 3 (MP3) data.
12. The circuit according to claim 1, wherein the one or
more processors:
extract a sign bit based on a logical product arithmetic
operation of the condition data and a bit string;
and generate the sign data based on the sign bit.
13. The circuit according to claim I wherein the one or
more processors:
extract a sign bit based on a logical product arithmetic
operation of the condition data and a bit string;
and invert the sign hit based on an arithmetic addition
operation of the sign hit and the hit string.
14. The circuit according to claim 1, wherein the one or
more processors:
extract the condition from the condition data using a bit
string;
and generate the sign data based on the bit string.

#* #* #* #* #*

